

About This E-Book

EPUB is an open, industry-standard format for e-books. However, support for EPUB and its many
features varies across reading devices and applications. Use your device or app settings to customize
the presentation to your liking. Settings that you can customize often include font, font size, single or
double column, landscape or portrait mode, and figures that you can click or tap to enlarge. For
additional information about the settings and features on your reading device or app, visit the device
manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the presentation of
these elements, view the e-book in single-column, landscape mode and adjust the font size to the
smallest setting. In addition to presenting code and configurations in the reflowable text format, we
have included images of the code that mimic the presentation found in the print book; therefore, where
the reflowable format may compromise the presentation of the code listing, you will see a “Click here
to view code image” link. Click the link to view the print-fidelity code image. To return to the
previous page viewed, click the Back button on your device or app.

Domain-Driven Design Distilled

Vaughn Vernon

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.
For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact governmentsales@pearsoned.com .
For questions about sales outside the U.S., please contact intlcs@pearson.com .
Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2016936587
Copyright © 2016 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions Department, please
visit www.pearsoned.com/permissions/ .
ISBN-13: 978-0-13-443442-1
ISBN-10: 0-13-443442-0
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2016

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

Nicole and Tristan
We did it again!

Contents

Preface

Acknowledgments

About the Author

Chapter 1 DDD for Me
Will DDD Hurt?
Good, Bad, and Effective Design
Strategic Design
Tactical Design
The Learning Process and Refining Knowledge
Let’s Get Started!

Chapter 2 Strategic Design with Bounded Contexts and the Ubiquitous Language
Domain Experts and Business Drivers
Case Study
Fundamental Strategic Design Needed
Challenge and Unify
Developing a Ubiquitous Language

Putting Scenarios to Work
What about the Long Haul?

Architecture
Summary

Chapter 3 Strategic Design with Subdomains
What Is a Subdomain?
Types of Subdomains
Dealing with Complexity
Summary

Chapter 4 Strategic Design with Context Mapping
Kinds of Mappings

Partnership
Shared Kernel
Customer-Supplier
Conformist
Anticorruption Layer

Open Host Service
Published Language
Separate Ways
Big Ball of Mud

Making Good Use of Context Mapping
RPC with SOAP
RESTful HTTP
Messaging

An Example in Context Mapping
Summary

Chapter 5 Tactical Design with Aggregates
Why Used
Aggregate Rules of Thumb

Rule 1: Protect Business Invariants inside Aggregate Boundaries
Rule 2: Design Small Aggregates
Rule 3: Reference Other Aggregates by Identity Only
Rule 4: Update Other Aggregates Using Eventual Consistency

Modeling Aggregates
Choose Your Abstractions Carefully
Right-Sizing Aggregates
Testable Units

Summary

Chapter 6 Tactical Design with Domain Events
Designing, Implementing, and Using Domain Events
Event Sourcing
Summary

Chapter 7 Acceleration and Management Tools
Event Storming

Other Tools
Managing DDD on an Agile Project

First Things First
Use SWOT Analysis
Modeling Spikes and Modeling Debt
Identifying Tasks and Estimating Effort

Timeboxed Modeling
How to Implement

Interacting with Domain Experts
Summary

References

Index

Preface

Why is model building such a fun and rewarding activity? Ever since I was a kid I have loved to
build models. At that time I mostly built models of cars and airplanes. I am not sure where LEGO was
in those days. Still, LEGO has been a big part of my son’s life since he was very young. It is so
fascinating to conceive and build models with those small bricks. It’s easy to come up with basic
models, and it seems you can extend your ideas almost endlessly.

You can probably relate to some kind of youthful model building.
Models occur in so many situations in life. If you enjoy playing board games, you are using models.

It might be a model of real estate and property owners, or models of islands and survivors, or models
of territories and building activities, and who knows what all. Similarly, video games are models.
Perhaps they model a fantasy world with fanciful characters playing fantastic roles. A deck of cards
and related games model power. We use models all the time and probably so often that we don’t give
most models a well-deserved acknowledgment. Models are just part of our lives.

But why? Every person has a learning style. There are a number of learning styles, but three of the
most discussed are auditory, visual, and tactile styles. The auditory learners learn by hearing and
listening. The visual learners learn by reading or seeing imagery. The tactile learners learn by doing
something that involves touching. It’s interesting that each learning style is heavily favored by the
individual to the extent that he or she can sometimes have trouble with other types of learning. For
example, tactile learners likely remember what they have done but may have problems remembering
what was said during the process. With model building, you would think that visual and tactile
learners would have a huge advantage over the auditory learners, because model building seems to
mostly involve visual and tactile stimulation. However, that might not always hold true, especially if
a team of model builders uses audible communication in their building process. In other words,
model building holds out the possibility to accommodate the learning style of the vast majority of
individuals.

With our natural affinity to learning through model building, why would we not naturally desire to
model the software that ever increasingly assists and influences our lives? In fact, to model software
appears to be, well, human. And model software we should. It seems to me that humans should be
elite software model builders.

It is my strong desire to help you be as human as you can possibly be by modeling software using
some of the best software modeling tools available. These tools are packaged under the name
“Domain-Driven Design,” or DDD. This toolbox, actually a set of patterns, was first codified by Eric
Evans in the book Domain-Driven Design: Tackling Complexity in the Heart of Software [DDD] . It
is my vision to bring DDD to everyone possible. To make my point, if I must say that I want to bring
DDD to the masses, then so be it. That is where DDD deserves to be, and DDD is the toolbox that
model-oriented humans deserve to use to create their most advanced software models. With this
book, I am determined to make learning and using DDD as simple and easy as possible and to bring
that to the broadest conceivable audience.

For auditory learners, DDD holds out the prospect of learning through the team communication of
building a model based on the development of a Ubiquitous Language. For visual and tactile
learners, the process of using DDD tools is very visual and hands-on as your team models both
strategically and tactically. This is especially true when drawing Context Maps and modeling the

business process using Event Storming. Thus, I believe that DDD can support everyone who wants to
learn and achieve greatness through model building.

Who Is This Book For?
This book is for everyone interested in learning the most important DDD aspects and tools and in
learning quickly. The most common readers are software architects and software developers who
will put DDD into practice on projects. Very often, software developers quickly discover the beauty
of DDD and are keenly attracted to its powerful tooling. Even so, I have made the subject
understandable for executives, domain experts, managers, business analysts, information architects,
and testers alike. There’s really no limit to those in the information technology (IT) industry and
research and development (R&D) environments who can benefit from reading this book.

If you are a consultant and you are working with a client to whom you have recommended the use
of DDD, provide this book as a way to bring the major stakeholders up to speed quickly. If you have
developers—perhaps junior or midlevel or even senior—working on your project who are unfamiliar
with DDD but need to use it very soon, make sure that they read this book. By reading this book, at
minimum, all the project stakeholders and developers will have the vocabulary and understand the
primary DDD tools being used. This will enable them to share things meaningfully as they move the
project forward.

Whatever your experience level and role, read this book and then practice DDD on a project.
Afterward, reread this book and see what you can learn from your experiences and where you can
improve in the future.

What This Book Covers
The first chapter, “DDD for Me,” explains what DDD can do for you and your organization and
provides a more detailed overview of what you will learn and why it’s important.

Chapter 2 , “Strategic Design with Bounded Contexts and the Ubiquitous Language ,” introduces
DDD strategic design and teaches the cornerstones of DDD, Bounded Contexts and the Ubiquitous
Language. Chapter 3 , “Strategic Design with Subdomains ,” explains Subdomains and how you can
use them to deal with the complexity of integrating with existing legacy systems as you model your
new applications. Chapter 4 , “Strategic Design with Context Mapping ,” teaches the variety of ways
that teams work together strategically and ways that their software can integrate. This is called
Context Mapping.

Chapter 5 , “Tactical Design with Aggregates ,” switches your attention to tactical modeling with
Aggregates. An important and powerful tactical modeling tool to be used with Aggregates is Domain
Events , which is the subject of Chapter 6 , “Tactical Design with Domain Events .”

Finally, in Chapter 7 , “Acceleration and Management Tools ,” the book highlights some project
acceleration and project management tools that can help teams establish and maintain their cadence.
These two topics are seldom if ever discussed in other DDD sources and are sorely needed by those
who are determined to put DDD into practice.

Conventions
There are only a few conventions to keep in mind while reading. All of the DDD tools that I discuss
are printed in italics. For example, you will read about Bounded Contexts and Domain Events.

Another convention is that any source code is presented in a monospaced Courier font. Acronyms and
abbreviations for works listed in the References on pages 136 -137 appear in square brackets
throughout the chapters.

Even so, what this book emphasizes most, and what your brain should like a lot, is visual learning
through lots of diagrams and figures. You will notice that there are no figure numbers in the book,
because I didn’t want to distract you with so many of those. In every case the figures and diagrams
precede the text that discusses them, which means that the graphic visuals introduce thoughts as you
work your way through the book. That means that when you are reading text, you can count on
referring back to the previous figure or diagram for visual support.

Acknowledgments

This is now my third book within the esteemed Addison-Wesley label. It’s also my third time
working with my editor, Chris Guzikowski, and developmental editor, Chris Zahn, and I am happy to
say that the third time has been as much a charm as the first two. Thanks again for choosing to publish
my books.

As always, a book cannot be successfully written and published without critical feedback. This
time I turned to a number of DDD practitioners who don’t necessarily teach or write about it but are
nonetheless working on projects while helping others use the powerful toolbox. I felt that this kind of
practitioner was crucial to make sure this aggressively distilled material said exactly what is
necessary and in just the right way. It’s kind of like, if you want me to talk for 60 minutes, give me 5
minutes to prepare; if you want me to talk for 5 minutes, give me a few hours to prepare.

In alphabetical order by last name, those who helped me the most were Jérémie Chassaing, Brian
Dunlap, Yuji Kiriki, Tom Stockton, Tormod J. Varhaugvik, Daniel Westheide, and Philip Windley.
Thanks much!

About the Author

Vaughn Vernon is a veteran software craftsman and thought leader in simplifying software design
and implementation. He is the author of the best-selling books Implementing Domain-Driven Design
and Reactive Messaging Patterns with the Actor Model, also published by Addison-Wesley. He has
taught his IDDD Workshop around the globe to hundreds of software developers. Vaughn is a frequent
speaker at industry conferences. He is most interested in distributed computing, messaging, and in
particular with the Actor model. Vaughn specializes in consulting around Domain-Driven Design and
DDD using the Actor model with Scala and Akka. You can keep up with Vaughn’s latest work by
reading his blog at www.VaughnVernon.co and by following him on his Twitter account
@VaughnVernon.

http://www.VaughnVernon.co

Chapter 1. DDD for Me

You want to improve your craft and to increase your success on projects. You are eager to help your
business compete at new heights using the software you create. You want to implement software that
not only correctly models your business’s needs but also performs at scale using the most advanced
software architectures. Learning Domain-Driven Design (DDD), and learning it quickly, can help
you achieve all of this and more.

DDD is a set of tools that assist you in designing and implementing software that delivers high
value, both strategically and tactically. Your organization can’t be the best at everything, so it had
better choose carefully at what it must excel. The DDD strategic development tools help you and your
team make the competitively best software design choices and integration decisions for your business.
Your organization will benefit most from software models that explicitly reflect its core
competencies. The DDD tactical development tools can help you and your team design useful
software that accurately models the business’s unique operations. Your organization should benefit
from the broad options to deploy its solutions in a variety of infrastructures, whether in house or in
the cloud. With DDD, you and your team can be the ones to bring about the most effective software
designs and implementations needed to succeed in today’s competitive business landscape.

In this book I have distilled DDD for you, with condensed treatment of both the strategic and
tactical modeling tools. I understand the unique demands of software development and the challenges
you face as you work to improve your craft in a fast-paced industry. You can’t always take months to
read up on a subject like DDD, and yet you still want to put DDD to work as soon as possible.

I am the author of the best-selling book Implementing Domain-Driven Design [IDDD] , and I have
also created and teach the three-day IDDD Workshop. And now I have also written this book to bring
you DDD in an aggressively condensed form. It’s all part of my commitment to bringing DDD to
every software development team, where it deserves to be. My goal, of course, includes bringing
DDD to you.

Will DDD Hurt?
You may have heard that DDD is a complicated approach to software development. Complicated? It
certainly is not complicated of necessity. Indeed, it is a set of advanced techniques to be used on
complex software projects. Due to its power and how much you have to learn, without expert
instruction it can be daunting to put DDD into practice on your own. You have probably also found
that some of the other DDD books are many hundreds of pages long and far from easy to consume and
apply. It required a lot of words for me to explain DDD in great detail in order to provide an
exhaustive implementation reference on more than a dozen DDD topics and tools. That effort resulted
in Implementing Domain-Driven Design [IDDD] . This new condensed book is provided to
familiarize you with the most important parts of DDD as quickly and simply as possible. Why?
Because some are overwhelmed by the larger texts and need a distilled guide to help them take the
initial steps to adoption. I have found that those who use DDD revisit the literature about it several
times. In fact, you might even conclude that you will never learn enough, and so you will use this book
as a quick reference, and refer to others for more detail, a number of times as your craft is refined.
Others have had trouble selling DDD to their colleagues and the all-important management team. This
book will help you do that, not only by explaining DDD in a condensed format, but also by showing
that tools are available to accelerate and manage its use.

Of course, it is not possible to teach you everything about DDD in this book, because I have
purposely distilled the DDD techniques for you. For much more in-depth coverage, see my book
Implementing Domain-Driven Design [IDDD] , and look into taking my three-day IDDD Workshop.
The three-day intensive course, which I have delivered around the globe to a broad audience of
hundreds of developers, helps get you up to speed with DDD rapidly. I also provide DDD training

online at http://ForComprehension.com .
The good news is, DDD doesn’t have to hurt. Since you probably already deal with complexity on

your projects, you can learn to use DDD to reduce the pain of winning over complexity.

Good, Bad, and Effective Design
Often people talk about good design and bad design. What kind of design do you do? Many software
development teams don’t give design even a passing thought. Instead, they perform what I call “the
task-board shuffle.” This is where the team has a list of development tasks, such as with a Scrum
product backlog, and they move a sticky note from the “To Do” column of their board to the “In
Progress” column. Coming up with the backlog item and performing “the task-board shuffle”
constitutes the entirety of thoughtful insights, and the rest is left to coding heroics as programmers
blast out the source. It rarely turns out as well as it could, and the cost to the business is usually the
highest price paid for such nonexistent designs.

This often happens due to the pressure to deliver software releases on a relentless schedule, where
management uses Scrum to primarily control timelines rather than allow for one of Scrum’s most
important tenets: knowledge acquisition.

When I consult or teach at individual businesses, I generally find the same situations. Software
projects are in peril, and entire teams are hired to keep systems up and running, patching code and
data daily. The following are some of the insidious problems that I find, and interestingly ones that
DDD can readily help teams avoid. I start with the higher-level business problems and move to the
more technical ones:

• Software development is considered a cost center rather than a profit center. Generally this is
because the business views computers and software as necessary nuisances rather than sources
of strategic advantage. (Unfortunately there may not be a cure for this if the business culture is
firmly fixed.)

• Developers are too wrapped up with technology and trying to solve problems using technology
rather than careful thought and design. This leads developers to constantly chase after new
“shiny objects,” which are the latest fads in technology.

• The database is given too much priority, and most discussions about the solutions center around
the database and a data model rather than business processes and operations.

• Developers don’t give proper emphasis to naming objects and operations according to the
business purpose that they fill. This leads to a large chasm between the mental model that the
business owns and the software that developers deliver.

• The previous problem is generally a result of poor collaboration with the business. Often the
business stakeholders spend too much time in isolated work producing specifications that
nobody uses, or that are only partly consumed by developers.

• Project estimates are in high demand, and very frequently producing them can add significant
time and effort, resulting in the delay of software deliverables. Developers use the “task-board
shuffle” rather than thoughtful design. They produce a Big Ball of Mud (discussed in the
following chapters) rather than appropriately segregating models according to business drivers.

• Developers house business logic in user interface components and persistence components.
Also, developers often perform persistence operations in the middle of business logic.

http://ForComprehension.com

• There are broken, slow, and locking database queries that block users from performing time-
sensitive business operations.

• There are wrong abstractions, where developers attempt to address all current and imagined
future needs by overly generalizing solutions rather than addressing actual concrete business
needs.

• There are strongly coupled services, where an operation is performed in one service, and that
service calls directly to another service to cause a balancing operation. This coupling often
leads to broken business processes and unreconciled data, not to mention systems that are very
difficult to maintain.

This all seems to happen in the spirit of “no design yields lower-cost software.” And all too often
it is simply a matter of businesses and the software developers not knowing that there is a much better
alternative. “Software is eating the world” [WSJ] , and it should matter to you that software can also
eat your profits, or feed your profits a banquet.

It’s important to understand that the imagined economy of No Design is a fallacy that has cleverly
fooled those who apply the pressure to produce software without thoughtful design. That’s because
design still flows from the brains of the individual developers through their fingertips as they wrangle
with the code, without any input from others, including the business. I think that this quote sums up the
situation well:

Questions about whether design is necessary or affordable are quite beside the point: design
is inevitable. The alternative to good design is bad design, not no design at all.

—Book Design: A Practical Introduction by Douglas Martin

Although Mr. Martin’s comments are not specifically about software design, they are still
applicable to our craft, where there is no substitute for thoughtful design. In the situation just
described, if you have five software developers working on the project, No Design will actually
produce an amalgamation of five different designs in one. That is, you get a blend of five different
made-up business language interpretations that are developed without the benefit of the real Domain
Experts.

The bottom line: we model whether we acknowledge modeling or not. This can be likened to how
roads are developed. Some ancient roads started out as cart paths that were eventually molded into
well-worn trails. They took unexplained turns and made forks that served only a few who had
rudimentary needs. At some point these pathways were smoothed and then paved for the comfort of
the increasing number of travelers who used them. These makeshift thoroughfares aren’t traveled
today because they were well designed, but because they exist. Few of our contemporaries can
understand why traveling one of these is so uncomfortable and inconvenient. Modern roads are
planned and designed according to careful studies of population, environment, and predictable flow.
Both kinds of roads are modeled. One model employed minimal, base intellect. The other model
exploited maximum cognition. Software can be modeled from either perspective.

If you are afraid that producing software with thoughtful design is expensive, think of how much
more expensive it’s going to be to live with or even fix a bad design. This is especially so when we
are talking about software that needs to distinguish your organization from all others and yield
considerable competitive advantages.

A word closely related to good is effective , and it possibly more accurately states what we should

strive for in software design: effective design. Effective design meets the needs of the business
organization to the extent that it can distinguish itself from its competition by means of software.
Effective design forces the organization to understand what it must excel at and is used to guide the
creation of the correct software model.

In Scrum, knowledge acquisition is done through experimentation and collaborative learning and is
referred to as “buying information” [Essential Scrum] . Knowledge is never free, but in this book I do
provide ways for you to accelerate how you come by it.

Just in case you still doubt that effective design matters, don’t forget the insights of someone who
seems to have understood its importance:

Most people make the mistake of thinking design is what it looks like. People think it’s this
veneer—that the designers are handed this box and told, “Make it look good!” That’s not
what we think design is. It’s not just what it looks like and feels like. Design is how it works.

—Steve Jobs

In software, effective design matters, most. Given the single alternative, I recommend effective
design.

Strategic Design
We begin with the all-important strategic design. You really cannot apply tactical design in an
effective way unless you begin with strategic design. Strategic design is used like broad brushstrokes
prior to getting into the details of implementation. It highlights what is strategically important to your
business, how to divide up the work by importance, and how to best integrate as needed.

First you will learn how to segregate your domain models using the strategic design pattern called
Bounded Contexts. Hand in glove, you will see how to develop a Ubiquitous Language as your
domain model within an explicitly Bounded Context.

You will learn about the importance of engaging with not only developers but also Domain
Experts as you develop your model’s Ubiquitous Language. You will see how a team of both
software developers and Domain Experts collaborate. This is a vital combination of smart and
motivated people who are needed for DDD to produce the best results. The language you develop
together through collaboration will become ubiquitous, pervasive, throughout the team’s spoken
communication and software model.

As you advance further into strategic design, you will learn about Subdomains and how these can
help you deal with the unbounded complexity of legacy systems, and how to improve your results on
greenfield projects. You will also see how to integrate multiple Bounded Contexts using a technique
called Context Mapping. Context Maps define both team relationships and technical mechanisms that
exist between two integrating Bounded Contexts.

Tactical Design
After I have given you a sound foundation with strategic design, you will discover DDD’s most
prominent tactical design tools. Tactical design is like using a thin brush to paint the fine details of
your domain model. One of the more important tools is used to aggregate entities and value objects
together into a right-sized cluster. It’s the Aggregate pattern.

DDD is all about modeling your domain in the most explicit way possible. Using Domain Events
will help you both to model explicitly and to share what has occurred within your model with the
systems that need to know about it. The interested parties might be your own local Bounded Context
and other remote Bounded Contexts.

The Learning Process and Refining Knowledge
DDD teaches a way of thinking to help you and your team refine knowledge as you learn about your
business’s core competencies. This learning process is a matter of discovery through group
conversation and experimentation. By questioning the status quo and challenging your assumptions
about your software model, you will learn much, and this all-important knowledge acquisition will
spread across the whole team. This is a critical investment in your business and team. The goal
should be not only to learn and refine, but to learn and refine as quickly as possible. There are
additional tools to help with those goals that can be found in Chapter 7 , “Acceleration and
Management Tools .”

Let’s Get Started!
Even in a condensed presentation, there’s plenty to learn about DDD. So let’s get started with
Chapter 2 , “Strategic Design with Bounded Contexts and the Ubiquitous Language .”

Chapter 2. Strategic Design with Bounded Contexts and the
Ubiquitous Language

What are these things called Bounded Contexts ? What’s the Ubiquitous Language ? In short, DDD
is primarily about modeling a Ubiquitous Language in an explicitly Bounded Context. While true,
that probably wasn’t the most helpful description that I could provide. Let me break this down for
you.

First, a Bounded Context is a semantic contextual boundary. This means that within the boundary
each component of the software model has a specific meaning and does specific things. The
components inside a Bounded Context are context specific and semantically motivated. That’s simple
enough.

When you are just getting started in your software modeling efforts, your Bounded Context is
somewhat conceptual. You could think of it as part of your problem space. However, as your model
starts to take on deeper meaning and clarity, your Bounded Context will quickly transition to your
solution space , with your software model being reflected as project source code. (The problem
space and solution space are better explained in the box.) Remember that a Bounded Context is
where a model is implemented, and you will have separate software artifacts for each Bounded
Context.

What Is a Problem Space and a Solution Space?

Your problem space is where you perform high-level strategic analysis and design steps
within the constraints of a given project. You can use simple diagrams as you discuss the
high-level project drivers and note important goals and risks. In practice, Context Maps
work very well in the problem space. Note too that Bounded Contexts may be used in
problem space discussions, when needed, but are also closely associated with your
solution space.

Your solution space is where you actually implement the solution that your problem
space discussions identify as your Core Domain. When the Bounded Context is being
developed as a key strategic initiative of your organization, it’s called the Core Domain.
You develop your solution in the Bounded Context as code, both main source and test
source. You will also produce code in your solution space that supports integration with
other Bounded Contexts .

The software model inside the context boundary reflects a language that is developed by the team
working in the Bounded Context and is spoken by every member of the team that creates the software
model that functions within that Bounded Context. The language is called the Ubiquitous Language
because it is both spoken among the team members and implemented in the software model. Thus, it is
necessary that the Ubiquitous Language be rigorous—strict, exact, stringent, and tight. In the
diagram, the boxes inside the Bounded Context represent the concepts of the model, which may be
implemented as classes. When the Bounded Context is being developed as a key strategic initiative
of your organization, it’s called the Core Domain.

When compared with all the software your organization uses, a Core Domain is a software model
that ranks among the most important, because it is a means to achieve greatness. A Core Domain is
developed to distinguish your organization competitively from all others. At the very least it
addresses a major line of business. Your organization can’t excel at everything and shouldn’t even
try. So you choose wisely what should be part of your Core Domain and what should not. This is the
primary value proposition of DDD, and you want to invest appropriately by committing your best
resources to a Core Domain.

When someone on the team uses expressions from the Ubiquitous Language , everyone on the team
understands what is meant with precision and constraints. The expression is ubiquitous within the
team, as is all language used by the team that defines the software model being developed.

When you consider language in a software model, think of the various nations that make up Europe.
Within one of the countries across this space, the official language of each country is clear. Within the
boundaries of those nations—for example, Germany, France, and Italy—the official languages are
certain. As you cross a boundary, the official language changes. The same goes for Asia, where
Japanese is spoken in Japan, and the languages spoken in China and Korea are clearly different
across the national boundaries. You can think of Bounded Contexts in much the same way, as being
language boundaries. In the case of DDD, the languages are those spoken by the team that owns the
software model, and a notable written form of the language is the software model’s source code.

Bounded Contexts, Teams, and Source Code Repositories
There should be one team assigned to work on one Bounded Context. There should also
be a separate source code repository for each Bounded Context. It is possible that one
team could work on multiple Bounded Contexts , but multiple teams should not work on
a single Bounded Context. Cleanly separate the source code and database schema for
each Bounded Context in the same way that you separate the Ubiquitous Language.
Keep acceptance tests and unit tests together with the main source code.

It is especially important to be clear that one team works on a single Bounded
Context. This completely eliminates the chances of any unwelcome surprises that arise
when another team makes a change to your source code. Your team owns the source code
and the database and defines the official interfaces through which your Bounded Context
must be used. It’s a benefit of using DDD.

In human languages, terminology evolves over time, and across national boundaries the same or
similar words take on nuances of meaning. Think of the differences between Spanish words used in
Spain and those same words used in Colombia, where even the pronunciation changes. There is
clearly Spain’s Spanish and Colombia’s Spanish. So too with software model languages. It’s
possible that people from other teams would have a different meaning for the same terminology,
because their business knowledge is within a different context; they are developing a different
Bounded Context. Any components outside the context are not expected to adhere to the same
definitions. In fact, they are probably different, either slightly or vastly, from the components that your
team models. That’s fine.

To understand one big reason to use Bounded Contexts , let’s consider a common problem with
software designs. Often teams don’t know when to stop piling more and more concepts into their
domain models. The model may start out small and manageable . . .

But then the team adds more concepts, and more, and still more. This soon results in a big problem.
Not only are there too many concepts, but the language of the model becomes blurred, because when
you think about it there are actually multiple languages in one large, confusing, unbounded model.

Due to this fault, teams will often turn a brand-new software product into what is called a Big Ball
of Mud. To be sure, a Big Ball of Mud is not something to be proud of. It’s a monolith, and worse.
This is where a system has multiple tangled models without explicit boundaries. It probably also
requires multiple teams to work on it, which is very problematic. Furthermore, various unrelated
concepts are blown out over many modules and interconnected with conflicting elements. If this
project has tests, it probably takes a very long time to run them, and so the tests may be bypassed at
especially important times.

It’s the product of trying to do too much, with too many people, in the wrong place. Any attempt to
develop and speak a Ubiquitous Language will result in a fractured and ill-defined dialect that will
soon be abandoned. The language wouldn’t even be as well conceived as Esperanto. It’s just a mess,
like a Big Ball of Mud.

Domain Experts and Business Drivers
There may be strong, or at least subtle, hints communicated by business stakeholders that could have
been used to help the technical team make better modeling choices. Thus, a Big Ball of Mud is often
the result of unbridled effort made by a team of software developers who don’t listen to the business
experts.

The business’s department or work group divisions can provide a good indication of where model
boundaries should exist. You will tend to find at least one business expert per business function.
Lately there is a trend toward grouping people by project, while business divisions or even functional
groups under a management hierarchy seem to be less popular. Even in the face of newer business
models you will still find that projects are organized according to business drivers and under an area

of expertise. You may need to think of division or function in those terms.
You can determine that this kind of segregation is needed when you consider that each business

function likely has different definitions for the same term. Consider the concept named “policy” and
how the meaning differs across the various insurance business functions. You can easily imagine that
a policy in underwriting is vastly different from a policy in claims and a policy in inspections. See
the box for more details.

The policy in each of these business areas exists for different reasons. There is no escaping this
fact, and no amount of mental gymnastics changes this.

Differences in Policies by Function
Policy in Underwriting: In the area of expertise that is focused on underwriting, a policy
is created based on the evaluation of the risks of the insured entity. For example, when
working in underwriting for property insurance, the underwriters would assess the risks
associated with a given property in order to calculate the premium for the policy to
cover the property asset.

Policy in Inspections: Again, if we are working in the property insurance field, the
insurance organization will likely have an inspections area of expertise that is
responsible for inspecting a property that is to be insured. The underwriters are
somewhat dependent on the information found during inspections, but only from the
standpoint that the property is in the condition asserted by the insured. Assuming that a
property will be insured, the inspection details—photos and notes—are associated with
a policy in the inspections area, and its data can be referenced by underwriting to
negotiate the final premium cost in the underwriting area.

Policy in Claims: A policy in the claims area of expertise tracks the request for
payment by the insured based on the terms of the policy created by the underwriting area.
The claims policy will need to make some references to the underwriting policy but will
be focused on, for example, damages to the insured property and reviews performed by
the claims personnel to determine the payment, if any, that should be made.

If you try to merge all three of these policy types into a single policy for all three business groups,
you will certainly have problems. This would become even more problematic if the already-

overloaded policy had to support a fourth and fifth business concept in the future. Nobody wins.

On the other hand, DDD emphasizes embracing such differences by segregating the differing types
into different Bounded Contexts. Admit that there are different languages, and function accordingly.
Are there three meanings for policy? Then there are three Bounded Contexts , each with its own
policy, with each policy having its own unique qualities. There’s no need to name these
UnderwritingPolicy , ClaimsPolicy , or InspectionsPolicy . The name of the
Bounded Context takes care of that scoping. The name is simply Policy in all three Bounded
Contexts.

Another Example: What Is a Flight?
In the airline industry, a “flight” can have multiple meanings. There is a flight that is
defined as a single takeoff and landing, where the aircraft is flown from one airport to
another. There is a different kind of flight that is defined in terms of aircraft maintenance.
And there is yet another flight that is defined in terms of passenger ticketing, either
nonstop or one-stop. Because each of these uses of “flight” is clearly understood only by
its context, each should be modeled in a separate Bounded Context. To model all three
of these in the same Bounded Context would lead to a confusing tangle.

Case Study
To make the reason to use Bounded Contexts more concrete, let me illustrate with a sample domain
model. In this case we are working on a Scrum-based agile project management application. So, a
central or core concept is Product, which represents the software that is to be built and that will be
refined over perhaps years of development. The Product has Backlog Items, Releases, and Sprints.
Each Backlog Item has a number of Tasks, and each Task can have a collection of Estimation Log
Entries. Releases have Scheduled Backlog Items and Sprints have Committed Backlog Items. So far,
so good. We have identified the core concepts of our domain model, and the language is focused and
intact.

 “Oh, yeah,” say the team members, “we also need our users. And we want to facilitate
collaborative discussions within the product team. Let’s represent each subscribing organization as a
Tenant. Within Tenants we will allow the registration of any number of Users, and Users will have
Permissions. And let’s add a concept called Discussion to represent one of the collaborative tools
that we will support.”

Then the team members add, “Well, there are also other collaboration tools. Discussions belong
within Forums and Discussions have Posts. Also we want to support Shared Calendars.”

They continue: “And don’t forget that we need a way for Tenants to make Payments. We will also
sell tiered support plans, so we need a way to track support incidences. Both Support and Payments
should be managed under an Account.”

And still more concepts emerge: “Every Scrum-based Product has a specific Team that works on
the product. Teams are composed of a single Product Owner and a number of Team Members. But
how can we address Human Resource Utilization concerns? Hmmm, what if we modeled the
Schedules of Team Members along with their utilization and availability?”

 “You know what else?” they ask. “Shared Calendars should not be limited to bland Calendar
Entries. We should be able to identify specific kinds of Calendar Entries, such as Reminders, Team
Milestones, Planning and Retrospective Meetings, and Target Dates.”

Hang on a minute! Do you see the trap that the team is falling into? Look at how far they have
strayed from the original core concepts of Product, Backlog Items, Releases, and Sprints. The
language is no longer purely about Scrum; it has become fractured and confused.

Don’t be fooled by the somewhat limited number of named concepts. For every named element, we
might expect to have two or three more concepts to support those that quickly popped into mind. The
team is already well on its way to delivering a Big Ball of Mud and the project has barely started.

Fundamental Strategic Design Needed
What tools are available with DDD to help us avoid such pitfalls? You need at least two fundamental
strategic design tools. One is the Bounded Context and the other is the Ubiquitous Language.
Employing a Bounded Context forces us to answer the question “What is core?” The Bounded
Context should hold closely all concepts that are core to the strategic initiative and push out all
others. The concepts that remain are part of the team’s Ubiquitous Language. You will see how
DDD works to avoid the design of monolithic applications.

Testing Benefits
Because Bounded Contexts are not monolithic, other benefits are experienced when they
are used. One such benefit is that tests will be focused on one model and thus be fewer in
number and will run more quickly. Although this isn’t the primary motivation to use
Bounded Contexts , it sure pays off in other ways.

Literally, some concepts will be in context and be clearly included in the team’s language.

And other concepts will be out of context. The concepts that survive this stringent application of
core-only filtering are part of the Ubiquitous Language of the team that owns the Bounded Context.

Take Note
The concepts that survive this stringent application of core-only filtering are part of the
Ubiquitous Language of the team that owns the Bounded Context. The boundary
emphasizes the rigor inside.

So, how do we know what is core? This is where we have to bring together two vital groups of
individuals into one cohesive, collaborative team: Domain Experts and software developers.

The Domain Experts will naturally be more focused on business concerns. Their thoughts will be
centered on their vision of how the business works. In the domain of Scrum, count on the Domain
Expert being a Scrum Master who thoroughly understands how Scrum is executed on a project.

Product Owner or Domain Expert?
You may wonder what the difference is between a Scrum product owner and a DDD
Domain Expert. Well, in some cases they might be one and the same, that is, one person
capable of filling both roles. Yet it should not be surprising that a product owner is
typically more focused on managing and prioritizing the product backlog and seeing to it
that the conceptual and technical continuity of the project is maintained. This doesn’t
mean, however, that the product owner is naturally an expert in the business’s core
competency in which you are working. Make sure that you have a true Domain Expert on
the team, and don’t substitute a product owner without the necessary know-how instead.

In your particular business, you also have Domain Experts. It’s not a job title but rather describes
those who are primarily focused on the business. It’s their mental model that we start with to form the
foundation of the team’s Ubiquitous Language.

On the other hand, developers are focused on software development. As depicted here, developers
can become consumed by programming languages and technologies. Yet developers working in a
DDD project need to carefully resist the urge to be so technically centered that they cannot accept the
business focus of the core strategic initiative. Rather, the developers should reject any uncalled-for
terseness and be able to embrace the Ubiquitous Language that is gradually developed by the team
inside their particular Bounded Context.

Focus on Business Complexity, Not Technical Complexity
You are using DDD because the business model complexity is high. We never want to
make the domain model more complex than it should be. Still, you are using DDD
because the business model is more complex than the technical aspects of the project.
That’s why the developers have to dig into the business model with Domain Experts !

Both developers and Domain Experts should reject any tendency to allow documents to rule over
conversation. The best Ubiquitous Language will be developed by a collaborative feedback loop
that drives out the combined mental model of the team. Open conversation, exploration, and
challenges to your current knowledge base result in deeper insights about the Core Domain.

Challenge and Unify
Now back to the question “What is core?” Using the previously out-of-control and ever-expanding
model, let’s challenge and unify!

One very simple challenge is to ask whether each of the large-model concepts adheres to the
Ubiquitous Language of Scrum. Well, do they? For example, Tenant , User , and Permission
have nothing to do with Scrum. These concepts should be factored out of our Scrum software model.

Tenant , User , and Permission should be replaced by Team , ProductOwner , and
TeamMember . A ProductOwner and a TeamMember are actually Users in a Tenancy , but
with ProductOwner and TeamMember we adhere to the Ubiquitous Language of Scrum. They
are naturally the terms we use when we have conversations about Scrum products and the work a
team does with them.

Are SupportPlans and Payments really part of Scrum project management? The answer here
is clearly “no.” True, both SupportPlans and Payments will be managed under a Tenant ’s
Account , but these are not part of our core Scrum language. They are out of context and are
removed from this model.

What about introducing Human Resource Utilization concerns? It’s probably useful to someone, but
it’s not going to be directly used by TeamMember Volunteers who will work on
BacklogItemTasks . It’s out of context.

After the addition of the Team , ProductOwner , and TeamMember , the modelers realized
that they were missing a core concept to allow TeamMembers to work on Tasks . In Scrum this is

known as a Volunteer . So, the Volunteer concept is in context and was included in the
language of the core model.

Even though calendar-based Milestones , Retrospectives , and the like are in context, the
team would prefer to save those modeling efforts for a later sprint. They are in context, but for now
they are out of scope.

Finally, the modelers want to make sure that they account for the fact that threaded Discussions
will be part of the core model. So they model a Discussion . This means that Discussion is
part of the team’s Ubiquitous Language , and thus inside the Bounded Context.

These linguistic challenges have resulted in a much cleaner and clearer model of the Ubiquitous
Language. Yet how will the Scrum model fulfill needed Discussions ? It would certainly require a
lot of ancillary software component support to make it work, so it seems inappropriate to model it
inside our Scrum Bounded Context. In fact, the full Collaboration suite is out of context. The
Discussion will be supported by integrating with another Bounded Context —the Collaboration
Context.

After that walk-through, we’re left with a much smaller actual Core Domain. Of course the Core
Domain will grow. We already know that Planning , Retrospectives , Milestones , and
related calendar-based models must be developed in time. Still, the model will grow only as new
concepts adhere to the Ubiquitous Language of Scrum.

And what about all the other modeling concepts that have been removed from the Core Domain ?
It’s quite possible that several of the other concepts, if not all, will be composed into their own
respective Bounded Contexts , each adhering to its own Ubiquitous Language. Later you will see
how we integrate with them using Context Mapping.

Developing a Ubiquitous Language
So how do you actually go about developing a Ubiquitous Language within your team as you put into
practice one of the chief tools provided by DDD? Is your Ubiquitous Language formed from a set of
well-known nouns? Nouns are important, but often software developers put too much emphasis on the
nouns within a domain model, forgetting that spoken language is composed of far more than nouns
alone. True, we have mainly focused on nouns within our previous sample Bounded Contexts to this
point, but that’s because we were interested in another aspect of DDD, that of constraining a Core
Domain down to essential model elements.

Accelerate Your Discovery
You may want to try a few Event Storming sessions as you work on your scenarios.
These can help you to quickly understand which scenarios you should be working on, and
how they should be prioritized. Likewise, developing concrete scenarios will give you a
better idea of the direction that you should take in your Event Storming sessions. They
are two tools that work well together. I explain the use of Event Storming in Chapter 7 ,
“Acceleration and Management Tools .”

Don’t limit your Core Domain to nouns alone. Rather, consider expressing your Core Domain as a
set of concrete scenarios about what the domain model is supposed to do. When I say “scenarios” I
don’t mean use cases or user stories, such as is common in software projects. I literally mean

scenarios in terms of how the domain model should work—what the various components do. This can
be accomplished in the most thorough way only by collaborating as a team of both Domain Experts
and developers.

Here’s an example of a scenario that fits with the Ubiquitous Language of Scrum:

Allow each backlog item to be committed to a sprint. The backlog item may be committed
only if it is already scheduled for release. If it is already committed to a different sprint, it
must be uncommitted first. When the commit completes, notify interested parties.

Notice that this is not just a scenario about how humans use Scrum on a project. We are not talking
about human procedures. Rather, this scenario is a description of how the very real software model
components are used to support the management of a Scrum-based project.

The previous scenario is not a perfectly stated one, and a perk of using DDD is that we are
constantly on the lookout for ways to improve the model. Yet this is a decent start. We hear nouns
spoken, but our scenario doesn’t limit us to nouns. We also hear verbs and adverbs, and other kinds
of grammar. You also hear that there are constraints—conditions that must be met before the scenario
can be completed to its successful end. The most important benefit and empowering feature is that you
can actually have conversations about how the domain model works—its design.

We can even draw simple pictures and diagrams. It’s all about doing whatever is needed to
communicate well on the team. One word of warning is appropriate here. Be careful about the time
spent in your domain-modeling efforts when it comes to keeping documents with written scenarios
and drawings and diagrams up-to-date over the long haul. Those things are not the domain model.
Rather, they are just tools to help you develop a domain model. In the end the code is the model and
the model is the code. Ceremony is for distinguished observances, like weddings, not domain models.
This doesn’t mean that you forgo any efforts to freshen scenarios, but only do so as long as it is
helpful rather than burdensome.

What would you do to improve a part of the Ubiquitous Language in our previous example? Think
about it for just a minute. What’s missing? Before too long you probably wish for an understanding of
who does the committing of backlog items to a sprint. Let’s add the who and see what happens:

The product owner commits each backlog item to a sprint . . .
You will find in many cases that you should name each persona involved in the scenario and give

some distinguishing attribute to other concepts such as to the backlog item and sprint. This will help
to make your scenario more concrete and less like a set of statements about acceptance criteria. Still,
in this particular case there isn’t a strong reason to name the product owner or further describe the
backlog item and sprint involved. In this case all product owners, backlog items, and sprints will
work the same way whether or not they have a concrete persona or identity. In cases where giving
names or other distinguishing identities to concepts in the scenario helps, use them:

The product owner Isabel commits the View User Profile backlog item to the Deliver User
Profiles sprint . . .

Now let’s pause for a moment. It’s not that the product owner is the sole individual responsible for
deciding that a backlog item will be committed to a sprint. Scrum teams wouldn’t like that very much,
because they would be committed to delivering software within some time frame that they had no say
in determining. Still, for our software model it may be most practical for a single person to have the

responsibility to carry out this particular action on the model. So in this case we have stated that it’s
the product owner role that does this. Even so, the nature of Scrum teams forces the question “Is there
anything that must be done by the remainder of the team to enable the product owner to perform the
commitment?”

Do you see what has happened? By challenging the current model with the who question, we have
been led to an opportunity for deeper insight into the model. Perhaps we should require at least some
team consensus that a backlog item can be committed before actually allowing the product owner to
carry out the commit operation. This could lead to the following refined scenario:

The product owner commits a backlog item to a sprint. The backlog item may be
committed only if it is already scheduled for release, and if a quorum of team members
have approved commitment . . .

OK, now we have a refined Ubiquitous Language , because we have identified a new model
concept called a quorum. We decided that there must be a quorum of team members who agree that a
backlog item should be committed, and there must be a way for them to approve commitment. This
has now introduced a new modeling concept and some idea that the user interface will have to
facilitate these team interactions. Do you see the innovation unfolding?

There is another who missing from the model. Which one? Our opening scenario concluded:

When the commit completes, notify interested parties.
Who or what are the interested parties? This question and challenge further lead to modeling

insights. Who needs to know when a backlog item has been committed to a sprint? Actually one
important model element is the sprint itself. The sprint needs to track total sprint commitment, and
what effort is already required to deliver all the sprint’s tasks. However you decide to design the
sprint to track that, the important point now is for the sprint to be notified when a backlog item is
committed to it:

If it is already committed to a different sprint, it must be uncommitted first. When the
commitment completes, notify the sprint from which it was uncommitted and the sprint to
which it is now committed.

Now we have a fairly decent domain scenario. This concluding sentence has also led us to an
understanding that the backlog item and the sprint may not necessarily be aware of commitment at the
same time. We need to ask the business to be certain, but it sounds like a great place to introduce
eventual consistency. You will see why that is important and how it is accomplished in Chapter 5 ,
“Tactical Design with Aggregates .”

The refined scenario in its entirety looks like this:

The product owner commits a backlog item to a sprint. The backlog item may be
committed only if it is already scheduled for release, and if a quorum of team members
have approved commitment. If it is already committed to a different sprint, it must be
uncommitted first. When the commitment completes, notify the sprint from which it was
uncommitted and the sprint to which it is now committed.

How would a software model actually work in practice? You can well imagine a very innovative
user interface supporting this software model. As a Scrum team is participating in a sprint planning

session, team members use their smartphones or other mobile devices to add their approval to each
backlog item as it is discussed and agreed upon to work on during the next sprint. The consensus of
the quorum of team members approving each of the backlog items gives the product owner the ability
to commit all of the approved backlog items to the sprint.

Putting Scenarios to Work
You may be wondering how you can make the transition from a written scenario to some sort of
artifact that can be used to validate your domain model against the team’s specifications. There is a
technique named Specification by Example [Specification] that can be used; it’s also called
Behavior-Driven Development [BDD] . What you are trying to achieve with this approach is to
collaboratively develop and refine a Ubiquitous Language , model with a shared understanding, and
determine whether your model adheres to your specifications. You will do this by creating
acceptance tests. Here is how we might restate the preceding scenario as an executable specification:
Click here to view code image

Scenario:
 The product owner commits a backlog item to a sprint
 Given a backlog item that is scheduled for release
 And the product owner of the backlog item
 And a sprint for commitment
 And a quorum of team approval for commitment
 When the product owner commits the backlog item to the sprint
 Then the backlog item is committed to the sprint
 And the backlog item committed event is created

With a scenario written in this form, you can create some backing code and use a tool to execute
this specification. Even without a tool, you may find that this form of scenario authoring with its
given/when/then approach works better than the previous scenario authoring example. Yet executing
your specifications as a means of validating the domain model may be hard to resist. I comment on
this further in Chapter 7 , “Acceleration and Management Tools .”

You don’t have to use this form of executable specification in order to validate your domain model
against your scenarios. You can use a unit testing framework to accomplish much the same thing,
where you create acceptance tests (not unit tests) that validate your domain model:
Click here to view code image

/*
 The product owner commits a backlog item to a sprint.
 The backlog item may be committed only if it is already
 scheduled for release, and if a quorum of team members
 have approved commitment. When the commitment completes,
 notify the sprint to which it is now committed.
*/

[Test]
public void ShouldCommitBacklogItemToSprint()
{
 // Given
 var backlogItem = BacklogItemScheduledForRelease();

 var productOwner = ProductOwnerOf(backlogItem);

 var sprint = SprintForCommitment();

 var quorum = QuorumOfTeamApproval(backlogItem, sprint);

 // When
 backlogItem.CommitTo(sprint, productOwner, quorum);

 // Then
 Assert.IsTrue(backlogItem.IsCommitted());

 var backlogItemCommitted =
 backlogItem.Events.OfType<BacklogItemCommitted>().SingleOrDefault();

 Assert.IsNotNull(backlogItemCommitted);
}

This unit-test-based approach to acceptance testing accomplishes the same goal as the executable
specification. The advantage here may be the ability to write this kind of scenario validation more
rapidly but at the cost of some readability. Still, most Domain Experts should be able to follow this
code with some help from the developer. When using this approach it would probably work best to
maintain the document form of the scenario associated with the validation code in comments, as seen
in this example.

Whichever approach you decide on, both will generally be used in a red-green (fail-pass) fashion,
where your specification will first fail when run, because there is no implementation of domain
model concepts yet to be validated. You stepwise refine your domain model through a series of red
results until you fully support your specification and the validations pass (you see all green). These
acceptance tests will be directly associated with your Bounded Context and kept in its source code
repository.

What about the Long Haul?
Now you may be wondering how we should support the Ubiquitous Language once the innovation
has ceased and maintenance sets in. Actually, some of the best learning, or knowledge acquisition,
takes place over a long period of time, even during what some might refer to as “maintenance.” It is a
mistake for teams to take the view that innovation ends when maintenance begins.

Perhaps the worst thing that could happen is for the label “maintenance phase” to be attached to a
Core Domain. A continuous learning process is not a phase at all. The Ubiquitous Language that
was developed early on must continue to thrive as years pass. True, it may eventually be less
significant, but probably not for quite a while. It is all part of your organization’s commitment to a
core initiative. If this long-term commitment cannot be made, is this model that you are working on
today truly a strategic differentiator, a Core Domain ?

Architecture
There is another question that you may have wondered about. What’s inside a Bounded Context ?
Using this Ports and Adapters [IDDD] architecture diagram, you can see that a Bounded Context is
composed of more than a domain model.

These layers are common in a Bounded Context: Input Adapters , such as user interface
controllers, REST endpoints, and message listeners; Application Services that orchestrate use cases
and manage transactions; the domain model that we’ve been focusing on; and Output Adapters such
as persistence management and message senders. There is much to be said about the various layers in
this architecture, and it is too elaborate to state in this distilled book. See Chapter 4 of Implementing
Domain-Driven Design [IDDD] for an exhaustive discussion.

Technology-Free Domain Model
Although there will be technology scattered throughout your architecture, the domain
model should be free of technology. For one thing, that’s why transactions are managed
by the application services and not by the domain model.

Ports and Adapters can be used as a foundational architecture, but it’s not the only one that can be
used along with DDD. Along with Ports and Adapters, you can use DDD with any of these
architectures or architecture patterns (and others), mixing and matching them as needed:

• Event-Driven Architecture; Event Sourcing [IDDD] . Note that Event Sourcing is discussed in
this book in Chapter 6 , “Tactical Design with Domain Events .”

• Command Query Responsibility Segregation (CQRS) [IDDD] .
• Reactive and Actor Model; see Reactive Messaging Patterns with the Actor Model [Reactive]

, which also elaborates on the use of the Actor model with DDD.
• Representational State Transfer (REST) [IDDD] .
• Service-Oriented Architecture (SOA) [IDDD] .
• Microservices are explained in Building Microservices [Microservices] as essentially

equivalent to DDD Bounded Contexts , so both the book you are reading and Implementing
Domain-Driven Design [IDDD] discuss the development of microservices from that
perspective.

• Cloud computing is supported in much the same way as microservices, such that anything you
read in this book, in Implementing Domain-Driven Design [IDDD] , and in Reactive
Messaging Patterns with the Actor Model [Reactive] is applicable.

Another comment on microservices is in order. Some consider a microservice to be much smaller
than a DDD Bounded Context. Using that definition, a microservice models only one concept and
manages one narrow type of data. An example of such a microservice is a Product and another is a
BacklogItem . If this is the granularity that you consider a worthy microservice, understand that
both the Product microservice and the BacklogItem microservice will still be in the same
larger, logical Bounded Context. The two small microservice components have only different
deployment units, which may also have an impact on how they interact (see Context Mapping).
Linguistically they are still within the same Scrum-based contextual and semantic boundary.

Summary
In summary you have learned:

• Some of the major pitfalls of putting too much into one model and creating a Big Ball of Mud
• The application of DDD strategic design
• The use of Bounded Context and Ubiquitous Language
• How to challenge your assumptions and unify mental models
• How to develop a Ubiquitous Language
• About the architectural components found inside a Bounded Context
• That DDD is not too difficult to put into practice yourself!

For a more in-depth treatment of Bounded Contexts , see Chapter 2 of Implementing Domain-Driven
Design [IDDD] .

Chapter 3. Strategic Design with Subdomains

When you work on a DDD project, there are always multiple Bounded Contexts in play. One of the
Bounded Contexts will be the Core Domain , and there will also be various Subdomains in other
Bounded Contexts. In the previous chapter you saw the importance of dividing different models by
their specific Ubiquitous Language and forming multiple Bounded Contexts . There are six Bounded
Contexts and six Subdomains in the preceding diagram. Because DDD strategic design was used, the
teams achieved the most optimal modeling composition: one Subdomain per Bounded Context , and
one Bounded Context per Subdomain. In other words, the Agile Project Management Core is both
one clean Bounded Context and one clean Subdomain. In some situations, there may be multiple
Subdomains in one Bounded Context , but that doesn’t achieve the most optimal modeling outcome.

What Is a Subdomain?
Simply stated, a Subdomain is a sub-part of your overall business domain. You can think of a
Subdomain as representing a single, logical domain model. Most business domains are usually too
large and complex to reason about as a whole, so we generally concern ourselves only with the
Subdomains that we must use within a single project. Subdomains can be used to logically break up
your whole business domain so that you can understand your problem space on a large, complex
project.

Another way to think of a Subdomain is that it is a clear area of expertise, assuming that it is
responsible for providing a solution to a core area of your business. This implies that the particular
Subdomain will have one or more Domain Experts who understand very well the aspects of the
business that a specific Subdomain facilitates. The Subdomain also has greater or lesser strategic
significance to your business.

If DDD had been used to develop it, the Subdomain would have been implemented as a clean

Bounded Context. The Domain Experts who specialize in that particular area of the business would
have been members of the team that developed the Bounded Context. Although using DDD to develop
a clean Bounded Context is the optimal choice, sometimes we can only wish that had been the case.

Types of Subdomains
There are three primary types of Subdomains within a project:

• Core Domain: This is where you are making a strategic investment in a single, well-defined
domain model, committing significant resources for carefully crafting your Ubiquitous
Language in an explicit Bounded Context. This is very high on your organization’s list of
projects because it will distinguish it from all competitors. Since your organization can’t be
distinguished in everything that it does, your Core Domain demarcates where it must excel.
Achieving the level of deep learning and understanding required to make such a determination
requires commitment, collaboration, and experimentation. It’s where the organization needs to
invest most liberally in software. I provide the means to accelerate and manage such projects
efficiently and effectively later in this book.

• Supporting Subdomain: This is a modeling situation that calls for custom development,
because an off-the-shelf solution doesn’t exist. However, you will still not make the kind of
investment that you have made for your Core Domain. You may want to consider outsourcing
this kind of Bounded Context to avoid mistaking it for something strategically distinguishing,
and thus investing heavily in it. This is still an important software model, because your Core
Domain cannot be successful without it.

• Generic Subdomain: This kind of solution may be available for purchase off the shelf but may
also be outsourced or even developed in house by a team that doesn’t have the kind of elite
developers that you assign to your Core Domain or even a lesser Supporting Subdomain. Be
careful not to mistake a Generic Subdomain for a Core Domain. You don’t want to make that
kind of investment here.

When discussing a project where DDD is being employed, we are most likely discussing a Core
Domain.

Dealing with Complexity
Some of the system boundaries within a business domain will very likely be legacy systems, perhaps
those that your organization has created or those that have been purchased through software licensing.
At this point you may not be able to do much about improving those legacy systems, but you still need
to reason about them when they have an impact on your Core Domain project. To do so, use
Subdomains as a tool for discussing your problem space.

Unfortunately, but true all the same, some legacy systems are so counter to the DDD way of
designing with Bounded Contexts that you might even refer to them as unbounded legacy systems.
That’s because such a legacy system is what I’ve already referred to as a Big Ball of Mud. In reality
the one system is full of multiple tangled models that should have been separately designed and
implemented but were jumbled together into one very complex and intertwined mess.

Stated another way, when we are discussing a legacy system there are probably some, even many,
logical domain models that exist inside that one legacy system. Think of each of those logical domain
models as a Subdomain. In the diagram, each logical Subdomain in the unbounded legacy monolithic
Big Ball of Mud is marked off by a dashed box. There are five logical models or Subdomains.
Treating the logical Subdomains as such helps us grapple with the complexity of large systems. This
makes a lot of sense because it allows us to treat the problem space as if it had been developed using
DDD and multiple Bounded Contexts.

The legacy system seems less monolithic and muddy if we imagine separate Ubiquitous
Languages , at least for the sake of understanding how we must integrate with it. Thinking about and
discussing such legacy systems using Subdomains helps us cope with the harsh realities of a large
entangled model. And as we reason using this tool, we can determine the Subdomains that are more

valuable to the business and necessary for our project, and those that can be relegated to lesser status.
With that in mind, you can even show the Core Domain that you are working on, or are about to

work on, right in the same simple diagram. This will help you understand the associations and
dependencies between Subdomains. But I will save the details of that discussion for Context
Mapping.

When using DDD, a Bounded Context should align one-to-one (1:1) with a single Subdomain. That
is, when using DDD, if there is one Bounded Context , there is, as a goal, one Subdomain model in
that Bounded Context. It may not always be possible or practical to achieve, but where possible it is
important to design in that way. This will keep your Bounded Contexts clean and focused on the core
strategic initiative.

If you must create a second model in the same Bounded Context (within your Core Domain), you
should segregate the secondary model from your Core Domain using a completely separate Module
[IDDD] . (A DDD Module is basically a package in Scala and Java, and a namespace in F# and C#.)
This makes a clear linguistic statement that one model is core and the other is merely supporting. This
particular use of segregating a Subdomain is one that you would employ in your solution space.

Summary
In summary you have learned:

• What Subdomains are and how they are used, both in the problem space and in the solution
space

• The difference between a Core Domain , a Supporting Subdomain , and a Generic Subdomain
• How you can make use of Subdomains while reasoning about integration with a Big Ball of
Mud legacy system

• The importance of aligning your DDD Bounded Context one-to-one with a single Subdomain
• How you should segregate a Supporting Subdomain model from your Core Domain model
using a DDD Module when it is impractical to separate the two in different Bounded Contexts

For exhaustive coverage of Subdomains , see Chapter 2 of Implementing Domain-Driven Design
[IDDD] .

Chapter 4. Strategic Design with Context Mapping

In previous chapters you learned that in addition to the Core Domain , there are multiple Bounded
Contexts associated with every DDD project. All concepts that didn’t belong in the Agile Project
Management Context —the Core Domain —were moved to one of several other Bounded Contexts.

You also learned that the Agile Project Management Core Domain would have to integrate with
other Bounded Contexts. That integration is known in DDD as Context Mapping. You can see in the
previous Context Map that Discussion exists in both Bounded Contexts. Recall that this is
because the Collaboration Context is the source of the Discussion , and that the Agile Project
Management Context is the consumer of the Discussion .

A Context Mapping is highlighted in this diagram by the line inside the dashed box. (The dashed
box is not part of the Context Mapping but is used only to highlight the line.) It’s actually this line
between the two Bounded Contexts that represents a Context Mapping. In other words, the line
indicates that the two Bounded Contexts are mapped in some way. There will be some inter-team
dynamic between the two Bounded Contexts as well as some integration.

Considering that in two different Bounded Contexts there are two Ubiquitous Languages , this line
represents the translation that exists between the two languages. By way of illustration, imagine that
two teams need to work together, but they work across national boundaries and don’t speak the same
language. Either the teams would need an interpreter, or one or both teams would have to learn a
great deal about the other’s language. Finding an interpreter would be less work for both teams, but it
could be expensive in various ways. For example, imagine the extra time needed for one team to talk
to the interpreter, and then for the interpreter to relay the statements to the other team. It works fine for
the first few moments but then becomes cumbersome. Still, the teams might find this a better solution
than learning and embracing a foreign language and constantly switching between languages. And, of
course, this describes the relationship only between two teams. What if there are a few other teams
involved? Similarly, the same trade-offs would exist when translating one Ubiquitous Language into
another, or in some other way adapting to another Ubiquitous Language.

When we talk about Context Mapping , what is of interest to us is what kind of inter-team
relationship and integration is represented by the line between any two Bounded Contexts. Well-
defined boundaries and contracts between them support controlled changes over time. There are
several kinds of Context Mappings , both team and technical, that can be represented by the line. In
some cases both an inter-team relationship and an integration mapping will be blended.

Kinds of Mappings

What relationships and integrations can be represented by the Context Mapping line? I will introduce
them to you now.

Partnership
A Partnership relationship exists between two teams. Each team is responsible for one Bounded
Context. They create a Partnership to align the two teams with a dependent set of goals. It is said that
the two teams will succeed or fail together. Since they are so closely aligned, they will meet
frequently to synchronize schedules and dependent work, and they will have to use continuous
integration to keep their integrations in harmony. The synchronization is represented by the thick
mapping line between the two teams. The thick line indicates the level of commitment required,
which is quite high.

It can be challenging to maintain a Partnership over the long term, so many teams that enter a
Partnership may do best to set limits on the term of the relationship. The Partnership should last
only as long as it provides an advantage, and it should be remapped to a different relationship when
the advantage is trumped by the drain of commitment.

Shared Kernel
A Shared Kernel , depicted on page 54 by the intersection of the two Bounded Contexts , describes
the relationship between two (or more) teams that share a small but common model. The teams must
agree on what model elements they are to share. It’s possible that only one of the teams will maintain
the code, build, and test for what is shared. A Shared Kernel is often very difficult to conceive in the
first place, and difficult to maintain, because you must have open communication between teams and
constant agreement on what constitutes the model to be shared. Still, it is possible to be successful if
all involved are committed to the idea that the kernel is better than going Separate Ways (see the later
section).

Customer-Supplier
A Customer-Supplier describes a relationship between two Bounded Contexts and respective teams,
where the Supplier is upstream (the U in the diagram) and the Customer is downstream (the D in the
diagram). The Supplier holds sway in this relationship because it must provide what the Customer
needs. It’s up to the Customer to plan with the Supplier to meet various expectations, but in the end
the Supplier determines what the Customer will get and when. This is a very typical and practical
relationship between teams, even within the same organization, as long as corporate culture does not
allow the Supplier to be completely autonomous and unresponsive to the real needs of Customers.

Conformist
A Conformist relationship exists when there are upstream and downstream teams, and the upstream
team has no motivation to support the specific needs of the downstream team. For various reasons the
downstream team cannot sustain an effort to translate the Ubiquitous Language of the upstream model
to fit its specific needs, so the team conforms to the upstream model as is. A team will often become a
Conformist , for example, when integrating with a very large and complex model that is well
established. Example: Consider the need to conform to the Amazon.com model when integrating as
one of Amazon’s affiliate sellers.

http://Amazon.com

Anticorruption Layer
An Anticorruption Layer is the most defensive Context Mapping relationship, where the downstream
team creates a translation layer between its Ubiquitous Language (model) and the Ubiquitous
Language (model) that is upstream to it. The layer isolates the downstream model from the upstream
model and translates between the two. Thus, this is also an approach to integration.

Whenever possible, you should try to create an Anticorruption Layer between your downstream
model and an upstream integration model, so that you can produce model concepts on your side of the
integration that specifically fit your business needs and that keep you completely isolated from foreign
concepts. Yet, just like hiring a translator to act between two teams speaking different languages, the
cost could be too high in various ways for some cases.

Open Host Service
An Open Host Service defines a protocol or interface that gives access to your Bounded Context as a
set of services. The protocol is “open” so that all who need to integrate with your Bounded Context
can use it with relative ease. The services offered by the application programming interface (API) are
well documented and a pleasure to use. Even if you were Team 2 in this diagram and could not take
time to create an isolating Anticorruption Layer for your side of the integration, it would be much
more tolerable to be a Conformist to this model than many legacy systems you may encounter. We
might say that the language of the Open Host Service is much easier to consume than that of other
types of systems.

Published Language
A Published Language , illustrated in the image at the bottom of page 57 , is a well-documented
information exchange language enabling simple consumption and translation by any number of
consuming Bounded Contexts. Consumers who both read and write can translate from and into the
shared language with confidence that their integrations are correct. Such a Published Language can
be defined with XML Schema, JSON Schema, or a more optimal wire format, such as Protobuf or
Avro. Often an Open Host Service serves and consumes a Published Language , which provides the
best integration experience for third parties. This combination makes the translations between two
Ubiquitous Languages very convenient.

Separate Ways
Separate Ways describes a situation where integration with one or more Bounded Contexts will not
produce significant payoff through the consumption of various Ubiquitous Languages. Perhaps the
functionality that you seek is not fully provided by any one Ubiquitous Language. In this case
produce your own specialized solution in your Bounded Context and forget integrating for this
special case.

Big Ball of Mud
You already learned plenty about Big Ball of Mud in the previous chapters, but I am going to
reinforce the serious problems you will experience when you must work in or integrate with one.
Creating your own Big Ball of Mud should be avoided like the plague.

Just in case that’s not enough warning, here’s what happens over time when you are responsible for
creating a Big Ball of Mud: (1) A growing number of Aggregates cross-contaminate because of
unwarranted connections and dependencies. (2) Maintaining one part of the Big Ball of Mud causes
ripples across the model, which leads to “whack-a-mole” issues. (3) Only tribal knowledge and
heroics—speaking all languages at once—save the system from complete collapse.

The problem is that there are already many Big Balls of Mud out there in the wide world of
software systems, and the number will no doubt grow every month. Even if you are able to avoid
creating a Big Ball of Mud by employing DDD techniques, you may still need to integrate with one or
more. If you must integrate with one or more, try to create an Anticorruption Layer against each
legacy system in order to protect your own model from the cruft that would otherwise pollute your
model with the incomprehensible morass. Whatever you do, don’t speak that language!

Making Good Use of Context Mapping
You may be wondering what specific kind of interface would be supplied to allow you to integrate
with a given Bounded Context. That depends on what the team that owns the Bounded Context
provides. It could be RPC via SOAP, or RESTful interfaces with resources, or it could be a

messaging interface using queues or Publish-Subscribe. In the least favorable of situations you may be
forced to use database or file system integration, but let’s hope that doesn’t happen. Database
integration really should be avoided, and if you are forced to integrate that way, you really should be
sure to isolate your consuming model by means of an Anticorruption Layer.

Let’s take a look at three of the more trustworthy integration types. We will move from the least
robust to the most robust integration approaches. First we will look at RPC, followed by RESTful
HTTP, and then messaging.

RPC with SOAP
Remote Procedure Calls, or RPC, can work in a number of ways. One popular way to use RPC is via
the Simple Object Access Protocol, or SOAP. The idea behind RPC with SOAP is to make using
services from another system look like a simple, local procedure or method invocation. Still, the
SOAP request must travel over the network, reach the remote system, perform successfully, and return
results over the network. This carries the potential for complete network failure, or at least latency
that is unanticipated when first implementing the integration. Additionally, RPC over SOAP also
implies strong coupling between a client Bounded Context and the Bounded Context providing the
service.

The main problem with RPC, using SOAP or another approach, is that it can lack robustness. If
there is a problem with the network or a problem with the system hosting the SOAP API, your

seemingly simple procedure call will fail entirely, giving only error results. Don’t be fooled by the
seeming ease of use.

When RPC works—and it mostly works—it can be a very useful way to integrate. If you can
influence the design of the service Bounded Context , it would be in your best interests if there is a
well-designed API that provides an Open Host Service with a Published Language. Either way, your
client Bounded Context can be designed with an Anticorruption Layer to isolate your model from
unwanted outside influences.

RESTful HTTP
Integration using RESTful HTTP focuses attention on the resources that are exchanged between
Bounded Contexts , as well as the four primary operations: POST, GET, PUT, and DELETE. Many
find that the REST approach to integration works well because it helps them define good APIs for
distributed computing. It’s difficult to argue against this claim given the success of the Internet and
Web.

There is a very certain way of thinking when you use RESTful HTTP. I won’t get into the details in
this book, but you should look into it before trying to employ REST. The book REST in Practice
[RiP] is a good place to start.

A service Bounded Context that sports a REST interface should provide an Open Host Service
and a Published Language. Resources deserve to be defined as a Published Language , and
combined with your REST URIs they will form a natural Open Host Service.

RESTful HTTP will tend to fail for many of the same reasons that RPC does—network and service
provider failures, or unanticipated latency. However, RESTful HTTP is based on the premise of the
Internet, and who can find fault with the track record of the Web when it comes to reliability,
scalability, and overall success?

A common mistake made when using REST is to design resources that directly reflect the
Aggregates in the domain model. Doing this forces every client into a Conformist relationship, where
if the model changes shape the resources will also. So you don’t want to do that. Instead, resources
should be designed synthetically to follow client-driven use cases. By “synthetic” I mean that to the

client the resources provided must have the shape and composition of what they need, not what the
actual domain model looks like. Sometimes the model will look just like what the client needs. But
what the client needs is what drives the design of the resources, and not the model’s current
composition.

Messaging
When using asynchronous messaging to integrate, much can be accomplished by a client Bounded
Context subscribing to the Domain Events published by your own or another Bounded Context.
Using messaging is one of the most robust forms of integration because you remove much of the
temporal coupling associated with blocking forms such as RPC and REST. Since you already
anticipate the latency of message exchange, you tend to build more robust systems because you never
expect immediate results.

Going Asynchronous with REST
It’s possible to accomplish asynchronous messaging using REST-based polling of a
sequentially growing set of resources. Using background processing, a client would
continuously poll for a service Atom feed resource that provides an ever-increasing set
of Domain Events. This is a safe approach to maintaining asynchronous operations
between a service and clients, while supplying up-to-date events that continue to occur in
the service. If the service becomes unavailable for some reason, clients will simply retry
on normal intervals, or back off with retry, until the feed resource is available again.

This approach is discussed in detail in Implementing Domain-Driven Design [IDDD]
.

Avoid Integration Train Wrecks

When a client Bounded Context (C1) integrates with a service Bounded Context (S1),
C1 should usually not be making a synchronous, blocking request to S1 as a direct result
of handling a request made to it. That is, while some other client (C0) makes a blocking
request to C1, don’t allow C1 to make a blocking request to S1. Doing so has a very high
potential for causing an integration train wreck between C0, C1, and S1. This can be
avoided by using asynchronous messaging.

Typically an Aggregate in one Bounded Context publishes a Domain Event , which could be
consumed by any number of interested parties. When a subscribing Bounded Context receives the
Domain Event , some action will be taken based on its type and value. Normally it will cause a new
Aggregate to be created or an existing Aggregate to be modified in the consuming Bounded Context.

Are Domain Event Consumers Conformists?
You may be wondering how Domain Events can be consumed by another Bounded
Context and not force that consuming Bounded Context into a Conformist relationship.
As recommended in Implementing Domain-Driven Design [IDDD] , and specifically in
Chapter 13, “Integrating Bounded Contexts,” consumers should not use the event types
(e.g., classes) of an event publisher. Rather, they should depend only on the schema of
the events, that is, their Published Language. This generally means that if the events are
published as JSON, or perhaps a more economical object format, the consumer should
consume the events by parsing them to obtain their data attributes.

Of course, the foregoing assumes that a subscribing Bounded Context can always benefit from
unsolicited happenings in the publishing Bounded Context. Sometimes, however, a client Bounded
Context will need to proactively send a Command Message to a service Bounded Context to force
some action. In such cases the client Bounded Context will still receive any outcome as a published
Domain Event.

In all cases of using messaging for integration, the quality of the overall solution will depend
heavily on the quality of the chosen messaging mechanism. The messaging mechanism should support
At-Least-Once Delivery [Reactive] to ensure that all messages will be received eventually. This also
means that the subscribing Bounded Context must be implemented as an Idempotent Receiver
[Reactive] .

At-Least-Once Delivery [Reactive] is a messaging pattern where the messaging mechanism will
periodically redeliver a given message. This will be done in cases of message loss, slow-reacting or
downed receivers, and receivers failing to acknowledge receipt. Because of this messaging
mechanism design, it is possible for the message to be delivered more than once even though the
sender sends it only once. Still, that needn’t be a problem when the receiver is designed to deal with
this.

Whenever a message could be delivered more than once, the receiver should be designed to deal
correctly with this situation. Idempotent Receiver [Reactive] describes how the receiver of a request
performs an operation in such a way that it produces the same result even if it is performed multiple
times. Thus, if the same message is received multiple times, the receiver will deal with it in a safe
manner. This can mean that the receiver uses de-duplication and ignores the repeated message, or
safely reapplies the operation with the exact same results that the previous delivery caused.

Due to the fact that messaging mechanisms always introduce asynchronous Request-Response
[Reactive] communications, some amount of latency is both common and expected. Requests for
service should (almost) never block until the service is fulfilled. Thus, designing with messaging in
mind means that you will always plan for at least some latency, which will make your overall
solution much more robust from the outset.

An Example in Context Mapping
Returning to an example discussed in Chapter 2 , “Strategic Design with Bounded Contexts and the
Ubiquitous Language ,” a question arises about the location of the official Policy type. Remember
that there are three different Policy types in three different Bounded Contexts. So, where does the
“policy of record” live in the insurance enterprise? It’s possible that it belongs to the underwriting
division since that is where it originates. For the sake of this example, let’s say it does belong to the
underwriting division. So how do the other Bounded Contexts learn about its existence?

When a component of type Policy is issued in the Underwriting Context , it could publish a
Domain Event named PolicyIssued . Provided through a messaging subscription, any other
Bounded Context may react to that Domain Event , which could include creating a corresponding
Policy component in the subscribing Bounded Context.

The PolicyIssued Domain Event would contain the identity of the official Policy . Here it’s
policyId . Any components created in a subscribing Bounded Context would retain that identity
for traceability back to the originating Underwriting Context. In this example the identity is saved as
issuedPolicyId . If there is a need for more Policy data than the PolicyIssued Domain
Event provided, the subscribing Bounded Context can always query back on the Underwriting
Context for more information. Here the subscribing Bounded Context uses the issuedPolicyId
to perform a query on the Underwriting Context.

Enrichment versus Query-Back Trade-offs
Sometimes there is an advantage to enriching Domain Events with enough data to satisfy
the needs of all consumers. Sometimes there is an advantage to keeping Domain Events
thin and allowing for querying back when consumers need more data. The first choice,
enrichment, allows for greater autonomy of dependent consumers. If autonomy is your
driving requirement, consider enrichment.

On the other hand, it is difficult to predict every piece of data that all consumers will
ever need in Domain Events , and there may be too much enrichment if you provide it
all. For example, it may be a poor security choice to greatly enrich Domain Events. If
that is the case, designing thin Domain Events and a rich query model with security for
consumers to request from may be the choice you need.

Sometimes circumstances will call for a balanced blend of both approaches.

And how might the query back on the Underwriting Context work? You could design a RESTful
Open Host Service and Published Language on the Underwriting Context. A simple HTTP GET
with the issuedPolicyId would retrieve the IssuedPolicyData .

You’re probably wondering about the data details of the Policy-Issued Domain Event. I will
provide Domain Event design details in Chapter 6 , “Tactical Design with Domain Events .”

Are you curious about what happened to the Agile Project Management Context example?
Straying from that to the insurance business domain allowed you to examine DDD with multiple
examples. That should have helped you grasp DDD even better. Don’t worry, we will return to the
Agile Project Management Context in the next chapter.

Summary
In summary, you have learned:

• About the various kinds of Context Mapping relationships, such as Partnership , Customer-
Supplier , and Anticorruption Layer

• How to use Context Mapping integration with RPC, with RESTful HTTP, and with messaging
• How Domain Events work with messaging
• A foundation on which you can build your Context Mapping experience

For thorough coverage of Context Maps , see Chapter 3 of Implementing Domain-Driven Design
[IDDD] .

Chapter 5. Tactical Design with Aggregates

So far I have discussed strategic design with Bounded Contexts , Subdomains , and Context Maps.
Here you see two Bounded Contexts , the Core Domain named Agile Project Management Context
and a Supporting Subdomain that provides collaboration tools through Context Mapping integration.

But what about the concepts that live inside a Bounded Context ? I’ve touched on these, but I will
next cover them in more detail. They are likely the Aggregates in your model.

Why Used
Each of the circled concepts that you see inside these two Bounded Contexts is an Aggregate. The
one concept not circled—Discussion —is modeled as a Value Object. Even so, we are focused
on Aggregates in this chapter, and we will take a closer look at how to model Product ,

BacklogItem , Release , and Sprint .

 What Is an Entity?
An Entity models an individual thing. Each Entity has a unique identity in that you can
distinguish its individuality from among all other Entities of the same or a different type.
Many times, perhaps even most times, an Entity will be mutable; that is, its state will
change over time. Still, an Entity is not of necessity mutable and may be immutable. The
main thing that separates an Entity from other modeling tools is its uniqueness—its
individuality.

See Implementing Domain-Driven Design [IDDD] for an exhaustive treatment of
Entities.

What is an Aggregate ? Two are represented here. Each Aggregate is composed of one or more
Entities , where one Entity is called the Aggregate Root. Aggregates may also have Value Objects
composed on them. As you see here, Value Objects are used inside both Aggregates .

What Is a Value Object?
A Value Object , or simply a Value , models an immutable conceptual whole. Within the
model the Value is just that, a value. Unlike an Entity , it does not have a unique identity,
and equivalence is determined by comparing the attributes encapsulated by the Value
type. Furthermore, a Value Object is not a thing but is often used to describe, quantify, or
measure an Entity.

See Implementing Domain-Driven Design [IDDD] for detailed coverage of Value
Objects.

The Root Entity of each Aggregate owns all the other elements clustered inside it. The name of the
Root Entity is the Aggregate ’s conceptual name. You should choose a name that properly describes
the conceptual whole that the Aggregate models.

Each Aggregate forms a transactional consistency boundary. This means that within a single
Aggregate , all composed parts must be consistent, according to business rules, when the controlling
transaction is committed to the database. This doesn’t necessarily mean that you are not supposed to
compose other elements within an Aggregate that don’t need to be consistent after a transaction. After
all, an Aggregate also models a conceptual whole. But you should be first and foremost concerned
with transactional consistency. The outer boundary drawn around Aggregate Type 1 and
Aggregate Type 2 represents a separate transaction that will be in control of atomically
persisting each object cluster.

Broader Meaning of Transaction
To some degree, the use of transactions in your application is an implementation detail.
For example, a typical use would have an Application Service [IDDD] controlling the
atomic database transaction on behalf of the domain model. Under a different
architecture, such as the Actor model [Reactive] where each Aggregate is implemented

as an actor, transactions could be handled using Event Sourcing (see the next chapter)
with a database that doesn’t support atomic transactions. Either way, what I mean by
“transaction” is how modifications to an Aggregate are isolated and how business
invariants—the rules to which the software must always adhere—are guaranteed to be
consistent following each business operation. Whether this requirement is controlled by
an atomic database transaction or by some other means, the Aggregate ’s state, or its
representation by means of Event Sourcing , must be safely and correctly transitioned
and maintained at all times.

The reasons for the transactional boundary are business motivated, because it is the business that
determines what a valid state of the cluster should be at any given time. In other words, if the
Aggregate was not stored in a whole and valid state, the business operation that was performed
would be considered incorrect according to business rules.

To think about this in a different way, consider this. Although two Aggregates are represented
here, only one of the two should be committed in a single transaction. That’s a general rule of
Aggregate design: modify and commit only one Aggregate instance in one transaction. That’s why
you see only the instance of Aggregate Type 1 within a transaction. We will look at the other
rules of Aggregate design soon.

Any other Aggregate will be modified and committed in a separate transaction. That’s why an
Aggregate is said to be a transactional consistency boundary. So, you design your Aggregate
compositions in a way that allows for transactional consistency and success. As seen here, an
instance of Aggregate Type 2 is controlled under a separate transaction from the instance of
Aggregate Type 1 .

Since instances of these two Aggregates are designed to be modified in separate transactions, how
do we get the instance of Aggregate Type 2 updated based on changes made to the instance of
Aggregate Type 1 , to which our domain model must react? That’s a good question; we will
consider the answer to it a bit later in this chapter.

The main point to remember from this section is that business rules are the drivers for determining
what must be whole, complete, and consistent at the end of a single transaction.

Aggregate Rules of Thumb

Let’s next consider the four basic rules of Aggregate design:
1. Protect business invariants inside Aggregate boundaries.
2. Design small Aggregates.
3. Reference other Aggregates by identity only.
4. Update other Aggregates using eventual consistency.

Of course, these rules are not necessarily strictly enforced by any “DDD police.” They are meant as
sound guidance such that when thoughtfully applied, they will help you design Aggregates that work
effectively. That being the case, we will now dig into each of these rules to see how they should be
applied wherever possible.

Rule 1: Protect Business Invariants inside Aggregate Boundaries
Rule 1 means that the business should ultimately determine Aggregate compositions based on what
must be consistent when a transaction is committed. In the example on page 81 , Product is
designed such that at the end of a transaction all composed ProductBacklogItem instances must
be accounted for and consistent with the Product root. Also, Sprint is designed such that at the
end of a transaction all composed CommittedBacklogItem instances must be accounted for and
consistent with the Sprint root.

Rule 1 becomes clearer with another example. Here’s the BacklogItem Aggregate. There is a
business rule that states, “When all Task instances have hoursRemaining of zero, the
BacklogItem status must be set to DONE .” Thus, at the end of a transaction this very specific
business invariant must be met. The business requires it.

Rule 2: Design Small Aggregates
This rule highlights that the memory footprint and transactional scope of each Aggregate should be
relatively small. In the preceding diagram the Aggregate that is represented is not small. Here,
Product literally contains a potentially very large collection of BacklogItem instances, a large
collection of Release instances, and a large collection of Sprint instances. Over time, these
collections could grow to be quite large, with thousands of BacklogItem instances and probably
hundreds of Release and Sprint instances. This design approach is generally a very poor choice.

However, if we break up the Product Aggregate to form four separate Aggregates , this is what
we get: a small Product Aggregate , a small BacklogItem Aggregate , a small Release
Aggregate , and a small Sprint Aggregate. These load quickly, take less memory, and are faster to
garbage collect. Perhaps most importantly, these Aggregates will have transactional success much
more frequently than the previous large-cluster Product Aggregate.

Following this rule has the added benefit that each Aggregate will be easier to work on, because
each associated task can be managed by a single developer. This also means that the Aggregate will
be easier to test.

Another thing to keep in mind when designing Aggregates is the Single Responsibility Principle
(SRP). If your Aggregate is trying to do too many things, it is not following SRP, and this will likely
be telling in its size. Ask yourself, for example, whether your Product is a very focused
implementation of a Scrum product, or if it is also trying to be other things. What is the reason to
change Product : to make it a better Scrum product, or to manage backlog items, releases, and
sprints? You should change Product only in order to make it a better Scrum product.

Rule 3: Reference Other Aggregates by Identity Only
Now that we’ve broken up the large-cluster Product into four smaller Aggregates , how should
each reference the others where needed? Here we follow Rule 3, “Reference other Aggregates by
identity only.” In this example we see that BacklogItem , Release , and Sprint all reference
Product by holding a ProductId . This helps keep Aggregates small and prevents reaching out
to modify multiple Aggregates in the same transaction.

This further helps keep the Aggregate design small and efficient, making for lower memory
requirements and quicker loading from a persistence store. It also helps enforce the rule not to modify
other Aggregate instances within the same transaction. With only identities of other Aggregates ,
there is no easy way to obtain a direct object reference to them.

Another benefit to using reference by identity only is that your Aggregates can be easily stored in
just about any kind of persistence mechanism, such as relational database, document database, key-
value store, and data grids/fabrics. This means that you have options to use a MySQL relational table,
a JSON-based store such as PostgreSQL or MongoDB, GemFire/Geode, Coherence, and GigaSpaces.

Rule 4: Update Other Aggregates Using Eventual Consistency
Here a BacklogItem is committed to a Sprint . Both the BacklogItem and the Sprint must
react to this. It is first the BacklogItem that knows it has been committed to a Sprint . This is
managed in one transaction, when the state of the BacklogItem is modified to contain the
SprintId of the Sprint to which it is committed. So, how do we ensure that the Sprint is also
updated with the BacklogItemId of the newly committed BacklogItem ?

As part of the BacklogItem Aggregate ’s transaction, it publishes a Domain Event named
BacklogItemCommitted . The BacklogItem transaction completes and its state is persisted
along with the Backlog-ItemCommitted Domain Event. When the
BacklogItemCommitted makes its way to a local subscriber, a transaction is started and the
state of the Sprint is modified to hold the BacklogItemId of the committed BacklogItem .
The Sprint holds the BacklogItemId inside a new CommittedBacklogItem Entity.

Recall now what you learned in Chapter 4 , “Strategic Design with Context Mapping .” Domain
Events are published by an Aggregate and subscribed to by an interested Bounded Context. The
messaging mechanism delivers the Domain Events to interested parties by means of subscriptions.
The interested Bounded Context can be the same one from which the Domain Event was published,
or it could be different Bounded Contexts.

It’s just that in the case of the BacklogItem Aggregate and the Sprint Aggregate , the
publisher and subscriber are in the same Bounded Context. You don’t absolutely need to use a full-
blown messaging middleware product for this case, but it’s easy to do so since you already use it for

publishing to other Bounded Contexts.

If Eventual Consistency Seems Scary
There is nothing incredibly difficult about using eventual consistency. Still, until you can
gain some experience, you may be concerned about using it. If so, you should still
partition your model into Aggregates according to business-defined transactional
boundaries. However, there is nothing preventing you from committing modifications to
two or more Aggregates in a single atomic database transaction. You might choose to
use this approach in cases that you know will succeed but use eventual consistency for
all others. This will allow you to get used to the techniques without taking too big an
initial step. Just understand that this is not the primary way that Aggregates are meant to
be used, and you may experience transactional failures as a result.

Modeling Aggregates
There are a few hooks waiting for you as you work on your domain model, implementing your
Aggregates. One big, nasty hook is the Anemic Domain Model [IDDD] . This is where you are using
an object-oriented domain model, and all of your Aggregates have only public accessors (getters and
setters) but no real business behavior. This tends to happen when there is a technical rather than
business focus during modeling. Designing an Anemic Domain Model requires you to take on all the
overhead of a domain model without realizing any of its benefits. Don’t take the bait!

Also watch out for leaking business logic into the Application Services above your domain model.
It can happen undetected, just like physical anemia. Delegating business logic from services to
helper/utility classes isn’t going to work out well either. Service utilities always exhibit an identity
crisis and can never keep their stories straight. Place your business logic in your domain model, or
suffer bugs sponsored by an Anemic Domain Model.

What about Functional Programming?
When using functional programming, the rules change considerably. While an Anemic
Domain Model is a bad idea when using object-oriented programming, it is somewhat
the norm when applying functional programming. That’s because functional programming
promotes the separation of data and behavior. Your data is designed as immutable data
structures or record types, and your behavior is implemented as pure functions that
operate on the immutable records of specific types. Rather than modifying the data that
functions receive as arguments, the functions return new values. These new values may
be the new state of an Aggregate or a Domain Event that represents a transition in an
Aggregate ’s state.

I have largely addressed the object-oriented approach in this chapter because it is still
the most widely used and well understood. Yet if you are employing a functional
language and approach to DDD, be aware that some of this guidance is not applicable or
is at least subject to overriding rules.

Next I’m going to show you some of the technical components you will need to implement a basic
Aggregate design. I assume you are using Scala, C#, Java, or another object-oriented programming
language. The following examples are in C# but are very understandable by Scala, F#, Java, Ruby,
Python, and other programmers alike.

The first thing you must do is create a class for your Aggregate Root Entity. Here is a UML
(Unified Modeling Language) representation of the Product Root Entity. Included is also the
Product class in C#, which extends a base class named Entity . This base class just takes care
of standard Entity kinds of things. See Implementing Domain-Driven Design [IDDD] for exhaustive

discussions on both Entity and Aggregate design and implementation.

Every Aggregate Root Entity must have a globally unique identity. A Product in the Agile
Project Management Context actually has two forms of globally unique identity. The TenantId
scopes the Root Entity inside a given subscriber organization. (Every organization that subscribes to
the offered services is known as a tenant and thus has a unique identity for that.) The second identity,
which is also globally unique, is the ProductId . This second identity sets the Product apart
from all others within the same tenant. Also included is the C# code that declares the two identities
inside Product .

Use of Value Objects
Here, both TenantId and ProductId are modeled as immutable Value Objects.

Next you capture any intrinsic attributes or fields that are necessary for finding the Aggregate. In
the case of Product , there are both description and name . Users can search one or both of
these to find each Product . I also provide the C# code that declares these two intrinsic attributes.

Of course, you can add simple behavior such as read accessors (getters) for intrinsic attributes. In
C# this would probably be done using public property getters. However, you may not want to expose
setters as public. Without public setters, how do property/attribute values change? When using an
object-oriented approach (C#, Scala, and Java), you change internal state using behavioral methods.
If using a functional approach (F#, Scala, and Clojure), the functions will return new values that are
different from the values passed as arguments.

You should be on a mission to fight the Anemic Domain Model [IDDD] . If you expose public
setter methods, it could quickly lead to anemia, because the logic for setting values on Product
would be implemented outside the model. Think hard before doing this, and keep this warning in
mind.

Finally, you add in any complex behavior. Here we’ve got four new methods:
PlanBacklogItem() , PlannedProductBacklogItem() , ScheduleRelease() ,
and ScheduleSprint() . The C# code for each of these methods should be added to the class.

Remember, when using DDD, we are always modeling a Ubiquitous Language inside a Bounded
Context. Thus, all parts of the Product Aggregate are modeled per the Ubiquitous Language. You
don’t just make up these composed parts. Everything shows harmony between Domain Experts and
developers of your close-knit team.

Choose Your Abstractions Carefully

An effective software model is always based on a set of abstractions that address the business’s way
of doing things. There is, however, the need to choose the appropriate level of abstraction for each
concept being modeled.

If you follow the direction of your Ubiquitous Language , you will generally create the proper
abstractions. It’s much easier to model the abstractions correctly because it is the Domain Experts
who convey at least the genesis of your modeling language. Still, sometimes software developers who
are overzealous for solving the wrong problems will try to force in abstractions that are, well, too
abstract.

For example, in the Agile Project Management Context we are dealing with Scrum. It makes sense
to model Product , BacklogItem , Release , and Sprint concepts that we’ve been
discussing. Even so, what if the software developers were less concerned about modeling the
Ubiquitous Language of Scrum, and more interested in modeling a solution to all current and future
Scrum concepts?

If this angle were pursued, the developers would probably come up with abstractions such as
ScrumElement and ScrumElementContainer . A ScrumElement could fill the current
need for Product and Backlog-Item , and ScrumElementContainer could represent the
obviously more explicit concepts of Release and Sprint . The ScrumElement would have a
typeName property, and it would be set to "Product" or "BacklogItem" in appropriate
cases. We could design the same kind of typeName property for ScrumElementContainer
and allow the values "Release" or "Sprint" to be set on it.

Do you see the problems with this approach? There are more than a few, but consider the
following:

• The language of the software model does not match the mental model of the Domain Experts.
• The level of abstraction is too high, and you will get into deep trouble when you start to model

the details of each of the individual types.
• This will lead to creating special cases in each of the classes and likely result in a complex

class hierarchy with general approaches to explicit problems.
• You will have much more code than you need, because you are trying to solve an unsolvable

problem that should not matter in the first place.
• Often the language of the wrong abstractions will find its way even into the user interface,

which will cause confusion for users.
• You will waste considerable time and money.
• You will never be able to address all future needs up front, which means if new Scrum

concepts are ever added in the future, your existing model will prove to be a failure in
foreseeing those needs.

Following such a path may seem strange to some, but this incorrect level of abstractions is used often
in technically inspired implementations.

Don’t get taken in by this alluring, highly abstract implementation trap. Model the Ubiquitous
Language explicitly according to the mental model of the Domain Experts that is refined by your
team. By modeling what the business needs today, you will save a considerable amount of time,
budget, code, and embarrassment. More still, you will do the business a great service by modeling an
accurate and useful Bounded Context that reflects an effective design.

Right-Sizing Aggregates
You may be wondering how you can determine the boundaries of Aggregates and prevent the design
of large clusters, while still maintaining consistency boundaries that will protect true business
invariants. Here I have provided a worthy design approach. If you have already created large-cluster
Aggregates , you can use this approach to refactor into smaller ones, but I am not going to start from
that perspective.

Consider these design steps that will help you reach consistency boundary goals:
1. Put your first focus on the second rule of Aggregate design, “Design small Aggregates. ” Start

by creating every Aggregate with just one Entity , which will serve as the Aggregate Root.
Don’t even dare to place two Entities in a single boundary. That opportunity will come soon
enough. Populate each of the Entities with the fields/attributes/properties that you believe are
most closely associated with the single Root Entity. One big hint here is to define every
field/attribute/property that is required to identify and find the Aggregate , as well as any
additional intrinsic fields/attributes/properties that are required for the Aggregate to be
constructed and left in a valid initial state.

2. Now place your focus on the first rule of Aggregate design, “Protect business invariants inside
Aggregate boundaries.” You have already asserted by the previous step that at a minimum all
the intrinsic fields/attributes must be up-to-date when the single-Entity Aggregate is persisted.
But now you need to look at each of your Aggregates one at a time. As you do so for Aggregate
A1, ask the Domain Experts if any other Aggregates you have defined must be updated in
reaction to changes made to Aggregate A1. Make a list of each of the Aggregates and their
consistency rules, which will indicate the time frames for all reaction-based updates. In other
words, “Aggregate A1” would be the heading of one list, and other Aggregate types would be
listed under A1 if they will be updated in reaction to A1 updates.

3. Now ask the Domain Experts how much time may elapse until each of the reaction-based
updates may take place. This will lead to two kinds of specifications: (a) immediately, and (b)
within N seconds/minutes/hours/days. One possible way to find the correct business threshold
is by presenting an exaggerated time frame (such as weeks or months) that is obviously
unacceptable. This will likely cause business experts to respond with an acceptable time frame.

4. For each of the immediate time frames (3a), you should strongly consider composing those two
Entities within the same Aggregate boundary. That means, for example, that Aggregate A1 and
Aggregate A2 will actually be composed into a new Aggregate A[1,2]. Now Aggregates A1
and A2 as they were previously defined will no longer exist. There is only Aggregate A[1,2].

5. For each of the reacting Aggregates that can be updated following a given elapsed time (3b),
you will update these using the fourth rule of Aggregate design, “Update other Aggregates using
eventual consistency.”

In this figure our focus is on modeling Aggregate A1. Note from the A1 list of consistency rules
that A2 has an immediate time frame, while C14 has an eventual (30 seconds) time frame. As a result,
A1 and A2 are modeled into a single Aggregate A[1,2]. During runtime Aggregate A[1,2] publishes
a Domain Event that causes Aggregate C14 to be updated eventually.

Be careful that the business doesn’t insist that every Aggregate fall within the 3a specification
(immediate consistency). It can be an especially strong tendency when many in the design session are
influenced by database design and data modeling. Those stakeholders will have a very transaction-
centered point of view. However, it is very unlikely that the business really needs immediate
consistency in every case. To change this thinking you will probably have to spend time proving how
transactions will fail due to concurrent updates by multiple users across different composed parts of
the (now) large-cluster Aggregates. Furthermore, you can point out how much memory overhead there
is with such large-cluster designs. Obviously these kinds of problems are what we are trying to avoid
in the first place.

This exercise indicates that eventual consistency is business driven, not technically driven. Of
course, you will have to find a way to technically cause eventual updates between multiple
Aggregates , as discussed in the previous chapter on Context Mapping. Even so, it is only the
business that can determine the acceptable time frame for updates to occur between various Entities.
Some are immediate, or transactional, which means they must be managed by the same Aggregate.
Some are eventual, which means they may be managed through Domain Events and messaging, for
example. Considering what the business would have to do if it ran its operations only by means of
paper systems can provide some worthwhile insights into how various domain-driven operations
should work within a software model of the business operations.

Testable Units
You should also design your Aggregates to be a sound encapsulation for unit testing. Complex
Aggregates are hard to test. Following the previous design guidance will help you model testable
Aggregates.

Unit testing is different from validating business specifications (acceptance tests) as discussed in
Chapter 2 , “Strategic Design with Bounded Contexts and the Ubiquitous Language ,” and Chapter 7 ,
“Acceleration and Management Tools .” Development of the unit tests will follow the creation of
scenario specification acceptance tests. What we are concerned with here is testing that the
Aggregate correctly does what it is supposed to do. You want to push on all the operations to ensure
the correctness, quality, and stability of your Aggregates. You can use a unit testing framework for

this, and there is much literature available on how to effectively unit test. These unit tests will be
directly associated with your Bounded Context and kept with its source code repository.

Summary
In this chapter you learned:

• What the Aggregate pattern is and why you should use it
• The importance of designing with a consistency boundary in mind
• About the various parts of an Aggregate
• The four rules of thumb of effective Aggregate design
• How you can model an Aggregate ’s unique identity
• The importance of Aggregate attributes and how to prevent creating an Anemic Domain Model
• How to model behavior on an Aggregate
• To always adhere to the Ubiquitous Language within a Bounded Context
• The importance of selecting the proper level of abstraction for your designs
• A technique for right-sizing your Aggregate compositions, and how that includes designing for

testability
For a more in-depth treatment of Entities , Value Objects , and Aggregates , see Chapters 5 , 6 , and
10 of Implementing Domain-Driven Design [IDDD] .

Chapter 6. Tactical Design with Domain Events

You’ve already seen a bit in previous chapters about how Domain Events are used. A Domain Event
is a record of some business-significant occurrence in a Bounded Context. By now you know that
Domain Events are a very important tool for strategic design. Still, often during tactical design
Domain Events are conceptualized and become a part of your Core Domain.

To see the full power that results from using Domain Events , consider the concept of causal
consistency. A business domain provides causal consistency if its operations that are causally related
—one operation causes another—are seen by every dependent node of a distributed system in the
same order [Causal] . This means that causally related operations must occur in a specific order, and
thus one thing cannot happen unless another thing happens before it. Perhaps this means that one
Aggregate cannot be created or modified until it is clear that a specific operation occurred to another
Aggregate :

1. Sue posts a message saying, “I lost my wallet!”
2. Gary says in reply, “That’s terrible!”
3. Sue posts a message saying, “Don’t worry, I found my wallet!”
4. Gary replies, “That’s great!”

If these messages were replicated on distributed nodes, but not in a causal order, it could appear
that Gary said, “That’s great!” to the message “I lost my wallet!” The message “That’s great!” is not
directly or causally related to “I lost my wallet!” and that’s definitely not what Gary wants Sue or

anyone else to read. Thus, if causality is not achieved in the proper way, the overall domain would be
wrong or at least misleading. This sort of causal, linearized system architecture can be readily
achieved through the creation and publication of correctly ordered Domain Events.

From tactical design efforts Domain Events become a reality in your domain model and can as a
result be published and consumed in your own Bounded Context and by others. It’s a very powerful
way to inform interested listeners of important occurrences that have taken place. Now you will learn
how to model Domain Events and use them in your Bounded Contexts.

Designing, Implementing, and Using Domain Events
The following guides you through the steps needed to effectively design and implement Domain
Events in your Bounded Context. Following this, you will also see examples of how Domain Events
are used.

This C# code might be considered the minimum interface that every Domain Event should support.
You generally want to convey the date and time when your Domain Event occurred, so that’s
provided by the OccurredOn property. This detail is not an absolute necessity, but it is often
useful. So your Domain Event types would likely implement this interface.

You must show care in how you name your Domain Event types. The words you use should reflect
your model’s Ubiquitous Language. These words will form a bridge between the happenings in your
model and the outside world. It’s vital that you communicate your happenings well.

Your Domain Event type names should be a statement of a past occurrence, that is, a verb in the
past tense. Here are some examples from the Agile Project Management Context :
ProductCreated , for instance, states that a Scrum product was created at some past time. Other
Domain Events are ReleaseScheduled , SprintScheduled , BacklogItemPlanned ,
and BacklogItemCommitted . Each of the names clearly and concisely states what happened in
your Core Domain.

It’s a combination of the Domain Event ’s name and its properties that fully conveys the record of
what happened in the domain model. But what properties should a Domain Event hold?

Ask yourself, “What is the application stimulus that causes the Domain Event to be published?” In
the case of ProductCreated there is a command that causes it (a command is just the object form
of a method/action request). The command is named CreateProduct . So you can say that
ProductCreated is the result of a CreateProduct command.

The CreateProduct command has a number of properties: (1) the tenantId that identifies
the subscribing tenant, (2) the productId that identifies the unique Product being created, the
(3) Product name , and (4) the Product description . Each of these properties is

essential to creating a Product .

Therefore, the ProductCreated Domain Event should hold all the properties that were
provided with the command that caused it to be created: (1) tenantId , (2) productId , (3)
name , and (4) description . This will fully and accurately inform all subscribers what
happened in the model; that is, a Product was created, it was for the tenant identified with the
tenantId , the Product was uniquely identified with productId , and the Product had the
name and description assigned to it.

These five examples give you a good idea of the properties that should be included with the
various Domain Events published by the Agile Project Management Context. For instance, when a
BacklogItem is committed to a Sprint , the BacklogItemCommitted Domain Event is
instantiated and published. This Domain Event contains the tenantId , the backlogItemId of
the BacklogItem that was committed, and the sprintId of the Sprint to which it was
committed.

As described in Chapter 4 , “Strategic Design with Context Mapping ,” there are times when a
Domain Event can be enriched with additional data. This can be especially helpful to consumers that
don’t want to query back on your Bounded Context to obtain additional data that they need. Even so,
you must be careful not to fill up a Domain Event with so much data that it loses its meaning. For
example, consider the problem with BacklogItemCommitted holding the entire state of the
BacklogItem . According to this Domain Event , what actually happened? All the extra data may
make it unclear, unless you require the consumer to have a deep understanding of your

BacklogItem element. Also, consider using BacklogItemUpdated with the full state of the
BacklogItem , as opposed to providing BacklogItemCommitted . What happened to the
BacklogItem is very unclear, because the consumer would have to compare the latest
BacklogItemUpdated to the previous BacklogItemUpdated in order to understand what
actually occurred to the BacklogItem .

To make the proper use of Domain Events clearer, let’s walk through one scenario. The product
owner commits a BacklogItem to a Sprint . The command itself causes the BacklogItem
and the Sprint to be loaded. Then the command is executed on the BacklogItem Aggregate.
This causes the state of the BacklogItem to be modified, and then the
BacklogItemCommitted Domain Event is published as an outcome.

It’s important that the modified Aggregate and the Domain Event be saved together in the same
transaction. If you are using an object-relational mapping tool, you would save the Aggregate to one
table and the Domain Event to an event store table, and then commit the transaction. If you are using
Event Sourcing , the state of the Aggregate is fully represented by the Domain Events themselves. I
discuss Event Sourcing in the next section of this chapter. Either way, persisting the Domain Event in
the event store preserves its causal ordering relative to what has happened across the domain model.

Once your Domain Event is saved to the event store, it can be published to any interested parties.
This might be within your own Bounded Context and to external Bounded Contexts. This is your way
of telling the world that something noteworthy has occurred in your Core Domain.

Note that just saving the Domain Event in its causal order doesn’t guarantee that it will arrive at
other distributed nodes in the same order. Thus, it is also the responsibility of the consuming Bounded
Context to recognize proper causality. It might be the Domain Event type itself that can indicate
causality, or it may be metadata associated with the Domain Event , such as a sequence or causal
identifier. The sequence or causal identifier would indicate what caused this Domain Event , and if
the cause was not yet seen, the consumer must wait to apply the newly arrived event until its cause
arrives. In some cases it is possible to ignore latent Domain Events that have already been
superseded by the actions associated with a later one; in this case causality has a dismissible impact.

One more point about what can cause a Domain Event is noteworthy. Although often it is a user-
based command emitted by the user interface that causes an event to occur, sometimes Domain Events
can be caused by a different source. This might be from a timer that expires, such as at the end of the
business day or the end of a week, month, or year. In cases like this it won’t be a command that
causes the event, because the ending of some time period is a matter of fact. You can’t reject the fact
that some time frame has expired, and if the business cares about this fact, the time expiration is
modeled as a Domain Event , and not as a command.

What is more, such an expiring time frame will generally have a descriptive name that will become
part of the Ubiquitous Language. For example, “Fiscal Year Ended” may be an important event that
your business needs to react to. Furthermore, 4:00 p.m. (16:00) on Wall Street is known as “Markets
Closed” and not just as 4:00 p.m. Therefore, you have a name for that particular time-based Domain
Event.

A command is different from a Domain Event in that a command can be rejected as inappropriate
in some cases, such as due to supply and availability of some resources (product, funds, etc.), or
another kind of business-level validation. So, a command may be rejected, but a Domain Event is a
matter of history and cannot logically be denied. Even so, in response to a time-based Domain Event
it could be that the application will need to generate one or more commands in order to ask the
application to carry out some set of actions.

Event Sourcing
Event Sourcing can be described as persisting all Domain Events that have occurred for an
Aggregate instance as a record of what changed about that Aggregate instance. Rather than persisting
the Aggregate state as a whole, you store all the individual Domain Events that have happened to it.
Let’s step through how this is supported.

All of the Domain Events that have occurred for one Aggregate instance, ordered as they
originally occurred, make up its event stream. The event stream begins with the first Domain Event
that ever occurred for the Aggregate instance and continues until the last Domain Event that occurred.
As new Domain Events occur for a given Aggregate instance, they are appended to the end of its
event stream. Reapplying the event stream to the Aggregate allows its state to be reconstituted from
persistence back into memory. In other words, when using Event Sourcing , an Aggregate that was
removed from memory for any reason is reconstituted entirely from its event stream.

In the preceding diagram, the first Domain Event to occur was BacklogItemPlanned ; the

next was BacklogItemStoryDefined ; and the event that just occurred is
BacklogItemCommitted . The full event stream is currently composed of those three events,
and they follow the order described and seen in the diagram.

Each of the Domain Events that occurs for a given Aggregate instance is caused by a command,
just as described previously. In the preceding diagram, it is the CommitBacklogItemToSprint
command that has just been handled, and this has caused the BacklogItemCommitted Domain
Event to occur.

The event store is just a sequential storage collection or table where all Domain Events are
appended. Because the event store is append-only, it makes the storage mechanism extremely fast, so
you can plan on a Core Domain that uses Event Sourcing to have very high throughput, low latency,
and be capable of high scalability.

Performance Conscious
If one of your primary concerns is performance, you will appreciate knowing about
caching and snapshots. First of all, your highest-performing Aggregates will be those
that are cached in memory, where there is no need to reconstitute them from storage each
time they are used. Using the Actor model with actors as Aggregates [Reactive] is one of
the easier ways to keep your Aggregates’ state cached.

Another tool at your disposal is snapshots, where the load time of your Aggregates
that have been evicted from memory can be reconstituted optimally without reloading
every Domain Event from an event stream. This translates to maintaining a snapshot of
some incremental state of your Aggregate (object, actor, or record) in the database.
Snapshots are discussed in more detail in Implementing Domain-Driven Design [IDDD]
and in Reactive Messaging Patterns with the Actor Model [Reactive] .

One of the greatest advantages of using Event Sourcing is that it saves a record of everything that
has ever happened in your Core Domain , at the individual occurrence level. This can be very helpful
to your business for many reasons, ones that you can imagine today, such as compliance and analytics,
and ones that you won’t realize until later. There are also technical advantages. For example,
software developers can use event streams to examine usage trends and to debug their source code.

You can find coverage of Event Sourcing techniques in Implementing Domain-Driven Design
[IDDD] . Also, when you use Event Sourcing you are almost certainly obligated to use CQRS. You
can also find discussions of this topic in Implementing Domain-Driven Design [IDDD] .

Summary

In this chapter you learned:
• How to create and name your Domain Events
• The importance of defining and implementing a standard Domain Event interface
• That naming your Domain Events well is especially important
• How to define the properties of your Domain Events
• That some Domain Events may be caused by commands, while others may happen due to the

detection of some other changing state, such as a date or time
• How to save your Domain Events to an event store
• How to publish your Domain Events after they are saved
• About Event Sourcing and how your Domain Events can be stored and used to represent the

state of your Aggregates
For a thorough treatment of Domain Events and integration, see Chapters 8 and 13 of Implementing
Domain-Driven Design [IDDD] .

Chapter 7. Acceleration and Management Tools

When using DDD we are on a quest for deep learning about how the business works, and then to
model software based on the extent of our learning. It’s really a process of learning, experimenting,
challenging, learning more, and modeling again. We need to crunch and distill knowledge in great
quantities and produce a design that is effective in meeting the strategic needs of an organization. The
challenge is that we have to learn quickly. In a fast-paced industry we are usually working against
time, because time matters, and time generally drives many of our decisions, possibly even more than
it should. If we don’t deliver on time and within budget, no matter what we have achieved with the
software, we seem to have failed. And everyone is counting on us to succeed in every way.

Some have made efforts to convince management that most project time estimations are valueless
and that they cannot be successfully used. I am not sure how those efforts are working out in the large,
but every client with whom I work is still being pressured to deliver within very specific time
frames, which forces timeboxing into the design/implementation process. At best it’s a constant
struggle between software development and management.

Unfortunately, one common response to this negative pressure is to try to economize and shorten
timelines by eliminating design. Recall from the first chapter that design is inevitable, and that either
you will do poorly as a result of bad design, or you will succeed by delivering with an effective
design, and possibly even with a good design. So, what you should attempt to do is meet the demands
of time squarely and design in an accelerated way, using approaches that will help you deliver the
very best design possible within the limits of time that you face.

To that end I provide some very useful design acceleration and project management tools in this
chapter. First I discuss Event Storming and then conclude with a way to leverage the artifacts
produced by that collaboration process to create estimates that are meaningful and, best of all,
attainable.

Event Storming
Event Storming is a rapid design technique that is meant to engage both Domain Experts and
developers in a fast-paced learning process. It is focused on the business and business process rather
than on nouns and data.

Prior to learning Event Storming I used a technique that I called event-driven modeling. It usually
involved conversations, concrete scenarios, and event-centric modeling using very lightweight UML.
The UML-specific steps could be achieved on a whiteboard alone and could also be captured in a
tool. However, as you probably know, few business people are informed and proficient in even a
minimalistic use of UML. So, this left most of the modeling part of the exercise to me or another
developer who understood the basics of UML. It was a very useful approach, but there had to be a
way to get business experts more directly involved in the process. That probably meant leaving out
UML in favor of a more engaging tool.

I first learned about Event Storming years ago from Alberto Brandolini [Ziobrando] , who had
also experimented with another form of event-driven modeling. On one occasion, being short on time,
Alberto decided that he should ditch the UML and use sticky notes instead. This was the birth of an
approach to rapid learning and software design that got everybody in the room very directly involved
in the process. Here are some of its advantages:

• It is a very tactile approach. Everyone gets a pad of sticky notes and a pen and is responsible
for contributing to the learning and design sessions. Both business people and developers stand
on equal ground as they learn together. Everyone provides input to the Ubiquitous Language.

• It focuses everyone on events and the business process rather than on classes and the database.
• It is a very visual approach, which dismisses code from the experimentation and puts everyone
on a level footing with the design process.

• It is very fast and very cheap to perform. You can literally storm out a new Core Domain in
rough format in a matter of hours rather than weeks. If you write something on a sticky note that
you later decide doesn’t work, you wad up the sticky note and throw it away. It costs you only a
penny or two for that mistake, and no one is going to resist the opportunity to refine due to effort
already invested.

• Your team will have breakthroughs in understanding. Period. It happens every time. Some will
come to the session thinking that they have a pretty good understanding of the specific core

business model, but no matter, they always leave with a greater understanding and even new
insights about the business process.

• Everybody learns something. Whether you are a Domain Expert or a software developer, you
will walk away from the sessions with a crisp, clear understanding of the model at hand. This is
different from achieving breakthroughs and is important in its own right. In many projects, at
least some project members, and possibly many, do not understand what they are working on
until it is too late and the damage is already in the code. Storming out a model helps everyone
clear up misunderstandings and move forward with a unified direction and purpose.

• This implies that you are also identifying problems in both the model and in understanding as
early and quickly as possible. Iron out misunderstandings and leverage the outcome as new
insights. Everybody in the room benefits.

• You can use Event Storming for both big-picture and design-level modeling. Doing big-picture
storming will be less precise, while design-level storming will lead you toward certain
software artifacts.

• It is unnecessary to limit the storming sessions to one. You can start off with a two-hour
storming session, then take a break. Sleep on your accomplishments and return the next day to
spend another hour or two to expand and refine. If you do this for two hours a day for three or
four days, you will gain a deep understanding of your Core Domain and integrations with your
surrounding Subdomains.

Here is a list of the people, mindset, and supplies you will need to storm out a model:
• Having the right people is essential, which means the Domain Expert(s) and developers who
are to work on the model. Everyone is going to have some of the questions and some of the
answers. In order to support each other, they all need to be in the same room during the
modeling sessions.

• Everyone should come with an open mind that is free of strict judgment. The biggest mistake I
see during Event Storming sessions is people trying to be too correct too soon. You should
rather be fully determined to create far too many events. More events is better than fewer
events, because that’s what will make you learn the most. There is time to refine later, and
refinement is fast and cheap.

• Have on hand an assortment of colors of sticky notes, and plenty of them. At a minimum you
need these colors: orange, purple/red, light blue, pale yellow, lilac, and pink. You may find that
other colors (such as green; see later examples) come in handy. The sticky note dimensions can
be square (3 inches by 3 inches, or 7.62 cm by 7.62 cm) rather than the wider variety that are
rectangular. You don’t need to write much on the sticky note; usually just a few words will do.
Consider getting the extra-sticky variety. You don’t want your sticky notes falling on the floor.

• Provide one black marker pen for each person, which will enable handwriting to show up bold
and clear. Fine-tip markers are best.

• Find a wide wall where you can model. Width is more important than height, but your modeling
surface should be approximately one meter/yard high. Width should be practically unlimited,
but something in the range of 10 meters/yards should be considered a minimum. In lieu of such a
wall being available, you can always use a long conference table or the floor. The problem
with a table is that it will ultimately limit your modeling space. The problem with the floor is
that it might not be accessible to everyone on the team. A wall is best.

• Obtain a long roll of paper, such as can often be found at art stores, teaching supply stores, and
even at Ikea stores. The paper should be to the dimensions described previously, with at least
10 meters/yards in width and 1 meter/yard in height. Hang the paper on the wall using strong
tape. Some may decide to forgo the paper and just work on whiteboards. This may work for a
while, but the sticky notes tend to lose adhesion over time on whiteboards, especially if they are
pulled up and restuck in different locations. Stickies adhere longer when they are applied to
paper. If you intend to model for brief periods of time over three or four days, rather than in one
long session, longevity of stickiness is important.

Given the basic supplies and having the right people participating in the session, you are ready to
begin. Consider each of the steps, one by one.

1. Storm out the business process by creating a series of Domain Events on sticky notes. The
most popular color to use for Domain Events is orange. Using orange makes the Domain
Events stand out most prominently on the modeling surface.
The following are some basic guidelines that should be employed as you create your Domain
Events:
• Creating Domain Events first should emphasize that we have our first and primary focus on
the business process, not on the data and its structure. It may take your team 10 to 15 minutes
to warm up to this, but follow the steps just as I outline them here. Don’t be tempted to jump
ahead.

• Write the name of each Domain Event on a sticky note. The name, as you learned in the
previous chapter, should be a verb stated in the past tense. For example, an event may be
named ProductCreated , and another may be named BacklogItemCommitted .

(You can certainly break these names into multiple lines on the sticky notes.) If you are doing
big-picture storming and you think that these names are too precise for the participants, use
other names.

• Place the sticky notes on your modeling surface in time order, that is, from left to right in the
order in which each event occurs in the domain. You start with the first Domain Events to the
far left of your modeling surface and then move gradually to the right. Sometimes you won’t
have a good understanding of the time order, in which case you should just put the
corresponding Domain Events somewhere in the model. Figure out the “when” part, which
will probably become obvious, later.

• A Domain Event that happens in parallel with another according to your business process can
be located under the Domain Event that happens at the same time. So, you use vertical space
to represent parallel processing.

• As you go through this part of the storming session, you are going to find trouble spots in your
existing or new business process. Clearly mark these with a purple/red sticky note and some
text that explains why it’s a problem. You need to invest time at such points to learn more.

• Sometimes the outcome of a Domain Event is a Process that needs to run. This could be a
single step or multiple complex steps. Each Domain Event that causes a Proces s to be
executed should be captured and named on a lilac sticky note. Draw a line with an arrowhead
from the Domain Event to the named Process (lilac sticky note). Model a fine-grained
Domain Event only if it is important to your Core Domain. Most likely a user registration
process is a necessity but probably not considered a core feature of your application. Model
the registration process as one single coarse-grained event, UserRegistered , and move
on. Put your concentrated efforts into more important events.

If you think you have exhausted all possible important Domain Events , it may be time to take a
break and come back to the modeling session later. Returning to the modeling surface a day later will
no doubt cause you to find missing concepts and to refine or toss out superficial ones that you
previously considered important. Even so, at some point you will have identified most of the Domain
Events that are of greatest importance. At that time you should move on to the next step.

2. Create the Commands that cause each Domain Event. Sometimes a Domain Event will be the
outcome of a happening in another system, and it will flow into your system as a result. Still,
often a Command will be the outcome of some user gesture, and that Command , when carried
out, will cause a Domain Event. The Command should be stated in the imperative, such as
CreateProduct and CommitBacklogItem . These are some basic guidelines:
• On the light blue sticky notes, write the name of the Command that causes each corresponding

Domain Event. For example, if you have a Domain Event named
BacklogItemCommitted , the corresponding Command that causes that event is named
CommitBacklogItem .

• Place the light blue sticky note of the Command just to the left of the Domain Event that it
causes. They are associated in pairs: Command/Event , Command/Event , Command/Event ,
and so on. Remember that some Domain Events will occur because of time limits being
reached and so may not have a corresponding Command that explicitly causes them.

• If there is a specific user role that performs an action, and it is important to specify, you can
place a small, bright yellow sticky note on the lower left corner of the light blue Command
with a stick figure and the name of the role. In the above figure, “Product Owner” would be
the role that performs the Command.

• Sometimes a Command will cause a Process to be run. This could be a single step or
multiple complex steps. Each Command that causes a Process to be executed should be
captured and named on a lilac sticky note. Draw a line with an arrowhead from the Command
to the named Process (lilac sticky note). The Process will actually cause one or more
Commands and subsequent Domain Events , and if you know what those are now, create
sticky notes for them and show them emitting from the Process.

• Continue to move from left to right in time order just as you did when first creating each of the
Domain Events.

• It is possible that creating Commands will cause you to think about Domain Events (as above
when discovering lilac Processes , or other ones) that you didn’t previously envision. Go
ahead and address this discovery by placing the newly discovered Domain Event on the
modeling surface along with its corresponding Command.

• You may also find that there is only one Command that causes multiple Domain Events.
That’s fine; model the one Command and place it to the left of the multiple Domain Events
that it causes.

Once you have all of the Commands associated with the Domain Events that they cause, you are
ready to move on to the next step.

3. Associate the Entity/Aggregate on which the Command is executed and that produces the
Domain Event outcome. This is the data holder where Commands are executed and Domain
Events are emitted. Entity relationship diagrams are often the first and most popular step in
today’s IT world, but it is a big mistake to start here. Business people don’t understand them
well, and they can shut down conversations quickly. In fact, this step has been relegated to third
place in Event Storming , because we are more focused on the business process than on the
data. Even so, we do need to think about data at some point, and that point is now. At this stage,
business experts will likely understand that the data comes into play. Here are some guidelines
for modeling the Aggregates :

• If the business people don’t like the word Aggregate , or if it confuses them in any way, you
should use another name. Usually they can understand Entity , or you could just call it Data.
The important thing is that the sticky allows the team to communicate clearly about the concept
that it represents. Use the pale yellow sticky notes for all Aggregates and write the name of an
Aggregate on each sticky note. This is a noun, such as Product or BacklogItem . You
will do this for each Aggregate in your model.

• Place the Aggregate sticky note behind and slightly above the Command and Domain Event
pairs. In other words, you should be able to read the noun written on the Aggregate sticky
note, but the Command and Domain Event pairs should adhere to the lower part of the
Aggregate sticky to indicate that they are associated. If you really want to put a little space
between the stickies that’s fine, but just be clear which Commands and Domain Events
belong to which Aggregate.

• As you move across your business process timeline, you will probably find that Aggregates
are repeatedly used. Don’t rearrange your timeline in order to move all Command/Event pairs
under a single Aggregate sticky note. Rather, create the same Aggregate noun on multiple
sticky notes and place them repeatedly on the timeline where the corresponding
Command/Event pairs occur. The main point is to model the business process; the business
process occurs over time.

• It’s possible that as you think about the data associated with various actions, you may
discover new Domain Events. Don’t ignore these. Rather, place the newly discovered
Domain Events along with the corresponding Commands and Aggregates on the modeling
surface. You may also discover that some of the Aggregates are too complex, and you need to
break these into a managed Process (lilac sticky). Don’t ignore these opportunities.

Once you have completed this part of the design stage, you are approaching some of the extra steps
that you can perform if you choose to. Also understand that if you are using Event Sourcing , as
described in the previous chapter, you have already come a long way toward understanding your
Core Domain implementation, because there is a large overlap in Event Storming and Event
Sourcing. Of course, the closer your storming is to the big picture, the further it potentially is from
actual implementation. Still, you can use this same technique to reach a design-level view. In my
experience teams tend to move in and out of big-picture and design-level within the same sessions. In
the end your need to learn certain details will drive you beyond the big picture to reach a design-
level model where it is essential.

4. Draw boundaries and lines with arrows to show flow on your modeling surface. You have
very likely discovered that there are multiple models in play, and Domain Events that flow
between models, in your Event Storming sessions. Here’s how to deal with that:
• In summary, you will very likely find boundaries under the following conditions:

departmental divisions, when different business people have conflicting definitions for the
same term, or when a concept is important but not really part of the Core Domain.

• You can use your black marker pens to draw on the paper modeling surface. Show context
and other boundaries. Use solid lines for Bounded Contexts and dashed lines for
Subdomains. Obviously drawing boundaries on the paper is permanent, so be sure you
understand this level of detail before wading in. If you want to start by bounding models
with less permanence, use the pink stickies to mark general areas and withhold drawing
boundaries with permanent markers until your confidence justifies it.

• Place the pink sticky notes inside various boundaries and put the name that applies inside the
boundary on those sticky notes. This names your Bounded Contexts.

• Draw lines with arrowheads to show the direction of Domain Events flowing between
Bounded Contexts. This is an easy way to communicate how some Domain Events arrive in
your system without being caused by a Command in your Bounded Context.

Any other details about these steps should be intuitively obvious. Just use boundaries and lines
to communicate.

5. Identify the various views that your users will need to carry out their actions, and important
roles for various users.
• You won’t necessarily need to show every view that your user interface will provide, or any
at all for that matter. If you decide to show any views, they should be those that are significant
and require some special care in creating. These view artifacts can be represented by green
sticky notes on the modeling surface. If it helps, draw a quick mockup (or wireframe) of the
user interface views that are most important.

• You can also use bright yellow sticky notes to represent various important user roles. Again,
show these only if you need to communicate something of significance about the user’s
interaction with the system, or something that the system does for a specific role of user.

It could well be that the fourth and fifth steps are all the extras you will need to incorporate with
your Event Storming exercises.

Other Tools
Of course this doesn’t prevent you from experimenting, such as placing other drawings on your
modeling surface and trying other modeling steps in your Event Storming session. Remember, this is
about learning and communicating a design. Use whatever tools you need to model as a close-knit
team. Just be careful to reject ceremony, because that’s going to cost a lot. Here are some other ideas:

Introduce high-level executable specifications that follow the given/when/then approach. These are
also known as acceptance tests. You can read more about this in the book Specification by Example
by Gojko Adzic [Specification] , and I provide an example in Chapter 2 , “Strategic Design with
Bounded Contexts and the Ubiquitous Language .” Just be careful not to go overboard with these,
where they become all-consuming and take precedence over the actual domain model. I estimate that
it requires somewhere in the range of 15% to 25% more time and effort to use and maintain
executable specifications instead of common unit-testing-based approaches (also demonstrated in
Chapter 2), and it is easy to get caught up in keeping the specifications relevant to the current
business direction as the model changes over time.

Try Impact Mapping [Impact Mapping] to make sure the software you are designing is a Core
Domain and not some less important model. This is a technique also defined by Gojko Adzic.

Look into User Story Mapping by Jeff Patton [User Story Mapping] . This is used to place your
focus on the Core Domain and understand what software features you should be investing in.

The previous three add-on tools have a large overlap with the DDD philosophy and would be quite
suitable to introduce into any DDD project. All of them are meant to be used in a highly accelerated
project, are low ceremony, and are very cheap to use.

Managing DDD on an Agile Project
I previously mentioned that there has been a movement around what is called No Estimates. This is
an approach that rejects typical estimation approaches such as story points or task hours. It focuses on
delivering value over controlling cost, and not estimating any task that would likely require only a
few months to complete. I don’t dismiss this approach. Yet, at the time of writing this, the clients I
work with are still required to provide estimates and to timebox tasks, such as programming effort
needed to implement even fine-grained features. If No Estimates works for you and your project
situation, use it.

I am also aware that some in the DDD community have basically defined their own process or
process execution framework for using DDD and performing with it on a project. This may work well
and be effective when it is accepted by a given team, but it can be more difficult to get buy-in from
organizations that have already invested in an agile execution framework, such as Scrum.

I have observed that recently Scrum has come under considerable criticism. While I don’t take
sides in this criticism, I will openly state that often or even most times Scrum is being misused. I have
already mentioned the tendency for teams to “design” using what I call “the task-board shuffle.” It’s
just not the way Scrum was meant to be used on a software project. And, to repeat myself again,
knowledge acquisition is both a Scrum tenet and a major goal of DDD but is largely ignored in
exchange for relentless delivery with Scrum. Even so, Scrum is still heavily used in our industry, and
I doubt that it will be displaced anytime soon.

Therefore, what I will do here is to show you how you can make DDD work in a Scrum-based
project. The techniques I show you should be equally applicable with other agile project approaches,
such as when using Kanban. There is nothing here that is exclusive to Scrum, although some of the
guidance is stated in terms of Scrum. And since many of you will already be familiar with Scrum by
putting it into practice in some form, most of my guidance here will be regarding the domain model

and learning, experimenting, and designing with DDD. You will need to look elsewhere for general
guidance on using Scrum, Kanban, or another agile approach.

Where I use the term task or task board , this should be compatible with agile in general, and even
Kanban. Where I use the term sprint , I will also try to include the words iteration for agile in
general and WIP (work in progress) as a reference to Kanban. It may not always be a perfect fit, as I
am not trying to define an actual process here. I hope you will simply benefit from the ideas and find a
way to apply them appropriately in your specific agile execution framework.

First Things First
One of the most important means to successfully employing DDD on a project is to hire good people.
There is simply no replacement for good people, and above-average developers for that matter. DDD
is an advanced philosophy and technique for developing software, and it calls for above-average
developers, even very good developers, to put it to use. Never underestimate the importance of hiring
the right people with the right skills and self-motivation.

Use SWOT Analysis
In case you are unfamiliar with SWOT analysis [SWOT] , it stands for Strengths, Weaknesses,
Opportunities, and Threats. SWOT analysis is a way for you to think about your project in very
specific ways, gaining maximum knowledge as early as possible. Here are the basic ideas behind
what you are looking to identify on a project:

• Strengths: characteristics of the business or project that give it an advantage over others
• Weaknesses: characteristics that place the business or project at a disadvantage relative to
others

• Opportunities: elements that the project could exploit to its advantage
• Threats: elements in the environment that could cause trouble for the business or project

At any time on any Scrum or other agile project you should feel free and inclined to use SWOT
analysis to determine your project’s current situation:

1. Draw a large matrix with four quadrants.
2. Going back to the sticky notes, choose a different color for each of the four SWOT quadrants.
3. Now, identity the Strengths of your project, the Weaknesses of your project, the Opportunities

on your project, and the Threats to your project.
4. Write these on the sticky notes and place them in the matrix within the appropriate quadrant.
5. Use these SWOT characteristics of the project (we are particularly thinking domain model

here) to plan what you are going to do about them. The next steps you take to promote the good
areas and mitigate the troublesome areas could be critical to your success.

You will have the opportunity to place these actions on the task board as you perform project
planning, as discussed later.

Modeling Spikes and Modeling Debt
Does it surprise you to learn that you can have modeling spikes and modeling debt to pay on a DDD
project?

One of the best things you can do at the inception of a project is to use Event Storming . This and
related modeling experiments would constitute a modeling spike. You will have to “buy” knowledge
about your Scrum product, and sometimes the payment is a spike, and a spike during project inception
is almost certain. Still, I have already shown you how using Event Storming can greatly reduce the
cost of necessary investment.

For certain, you can’t expect to model your domain perfectly from the start, even if you think in
terms of the inception of your project as having a valuable modeling spike. You won’t even be perfect
as you use Event Storming . For one thing, business and our understanding of it change over time, and
so will your domain model.

Furthermore, if you intend to timebox your modeling efforts as tasks on a task board, expect to
incur some modeling debt during each sprint (or iteration, or WIP). You simply won’t have time to
carry out every desired modeling task to perfection when you are timeboxed. For one thing, you will
start a design and realize after experimentation that the design you have does not fit the business needs
as well as you expected. Yet the time limit that you are under will require you to move on.

The worst thing you could do now is to just forget everything that you learned from the modeling
efforts that called out for a different, improved design. Rather, make a note that this needs to go into a
later sprint (or iteration, WIP). This can be brought to your retrospective meeting 1 and turned in as a
new task at your next sprint planning meeting (or iteration planning meeting, or added to the Kanban
queue).

1 . In Kanban you can actually have retrospectives every day, so don’t wait for long to present the need to improve the model.

Identifying Tasks and Estimating Effort
Event Storming is a tool that can be used at any time, not just during project inception. As you work
in an Event Storming session, you will naturally create a number of artifacts. Each of the Domain
Events , Commands , and Aggregates that you storm out in your paper model can be used as
estimation units. How so?

One of the easiest and most accurate ways to estimate is by using a metrics-based approach. As
you see here, create a simple table with estimation units for each component type that you will need to
implement. This will take the guesswork out of estimates and provide science around the process of
creating estimations of effort. Here is how the table works:

1. Create one column for Component Type to describe the specific kind of component for which
the estimation units are defined.

2. Create three other columns, one each for Easy , Moderate , and Complex. These columns will
reflect the estimation unit, which is in hours or fractions of hours, for the specific unit type.

3. Now create one row for each component type in your architecture. Shown are Domain Event ,
Command , and Aggregate types. However, don’t limit yourself to those. Create a row for the

various user interface components, services, persistence, Domain Event serializers and
deserializers, and so on. Feel free to create a row for every single kind of artifact that you will
create in source code. (If, for example, you normally create a Domain Event serializer and
deserializer along with each Domain Event as a composite step, assign an estimation value to
Domain Events that reflects the creation of all of those components together in each column.)

4. Now fill in the hours or fraction of an hour needed for each level of complexity: easy,
moderate, and complex. These estimates not only include the time needed for implementation
but may also include further design and testing efforts. Make these accurate, and be realistic.

5. When you know the backlog item tasks (WIP) that you will work on, obtain a metric for each of
the tasks and identify it clearly. You might use a spreadsheet for this.

6. Add up all the estimation units for all components in the current sprint (iteration or WIP), and
this becomes your total estimation.

As you execute each sprint (iteration or WIP), tune your metrics to reflect the hours or fractions of
hours that were actually required.

If you are using Scrum and you have come to detest hour estimates, understand that this approach is
much more forgiving and also much more accurate. As you learn your cadence, you will fine-tune
your estimation metrics to be more accurate and realistic. It might require a few sprints to get it right.
Also realize that as time and experience progress, you will probably either tune your numbers lower
or use the Easy or Moderate columns more readily.

If you are using Kanban and you think that estimates are completely fallacious and unnecessary, ask
yourself a question: How do I know how to determine an accurate WIP in the first place in order to
correctly limit our work queue? Regardless of what you may think, you are still estimating the effort
involved and hoping that it is correct. Why not add a little science to the process and use this simple
and accurate estimation approach?

A Comment on Accuracy
This approach works. On one large corporate program the organization demanded
estimates for a large and complex project within the overall program. Two teams were
assigned to this task. First there was a team of high-cost consultants who worked with
Fortune 500 companies to estimate and manage projects. They were accountants and had
doctorates and were outfitted with everything that would both intimidate and give them
the clear advantage. The second team of architects and developers was empowered with
this metrics-based estimation process. The project was in the $20 million range, and in
the end when both estimates came in, they were within approximately $200,000 of each
other (the technical team’s being the slightly lower estimate). Not bad for techies.

You should be able to get within 20% accuracy on long-term estimates, and much
better on shorter-term estimates, such as for sprints, iterations, and WIP queues.

Timeboxed Modeling
Now that you have estimates for each component type, you can base your tasks directly off of those
components. You might choose to keep each component as a single task with a number of hours or
fraction thereof, or you might choose to break your tasks down a bit further. However, I suggest being
careful with breaking tasks down to be too fine-grained, so as not to make the task board overly
complex. As shown previously, it might even be best to combine all of the Commands and all of the
Domain Events used by a single Aggregate into a single task.

How to Implement
Even with artifacts identified by Event Storming , you will not necessarily have all the knowledge
you need to work on a specific domain scenario, story, and use case. If more is needed, be sure to
include time for further knowledge acquisition in your estimates. But time for what? Recall that in
Chapter 2 I introduced you to creating concrete scenarios around your domain model. This can be one
of the best ways to acquire knowledge about your Core Domain , beyond what you can get out of
Event Storming. Concrete scenarios and Event Storming are two tools that should be used together.
Here’s how it works:

• Perform a quick session of Event Storming , perhaps just for an hour or so. You will almost
certainly discover that you need to develop more concrete scenarios around some of your quick
modeling discoveries.

• Partner with a Domain Expert to discuss one or more concrete scenarios that need to be
refined. This identifies how the software model will be used. Again, these are not just
procedures but should be stated with the goal of identifying actual domain model elements (e.g.,
objects), how the elements collaborate, and how they interact with users. (Refer to Chapter 2 as
needed.)

• Create a set of acceptance tests (or executable specifications) that exercise each of the
scenarios. (Refer to Chapter 2 as needed.)

• Create the components to allow the tests/specifications to execute. Iterate (briefly and quickly)
as you refine the tests/specifications and the components until they do what your Domain Expert
expects.

• Very likely some of the iteration (brief and quick) will cause you to consider other scenarios,
create additional tests/specifications, and refine existing and create new components.

Continue this until you have acquired all the knowledge necessary to meet a limited business
objective, or until your timebox expires. If you haven’t reached the desired point, make sure to incur
modeling debt so that this can be addressed in the (ideally near) future.

Yet how much time will you need from Domain Experts ?

Interacting with Domain Experts
One of the major challenges of employing DDD is getting time with Domain Experts , and without
overdoing it. Many times those who are Domain Experts on a project will have loads of other
responsibilities, hours of meetings, and possibly travel. With such potential absences from the
modeling environment, it can be difficult to find enough time with them. So, we had better make the
time we use count and limit it to just what is necessary. Unless you make modeling sessions fun and
efficient, you stand a good chance of losing their help at just the wrong time. If they find it valuable,
enlightening, and rewarding, you will likely establish the strong partnership that you will need.

So the first questions to answer are “When do we need time with Domain Experts ? What tasks do
they need to help us perform?”

• Always include Domain Experts in Event Storming activities. Developers will always have a
lot of questions, and Domain Experts will have the answers. Make sure they are in the Event
Storming sessions together.

• You will need Domain Experts’ input on discussions and the creation of model scenarios. See
Chapter 2 for examples.

• Domain Experts will be needed to review tests to verify model correctness. This assumes that
the developers have already made a conscientious effort to adhere to the Ubiquitous Language
and to use quality, realistic test data.

• You will need Domain Experts to refine the Ubiquitous Language and its Aggregate names,
Commands , and Domain Events , which are determined by the entire team. Ambiguities are
resolved through review, questions, and discussion. Even so, Event Storming sessions should

have already resolved most of the questions about the Ubiquitous Language.
So, now that you know what you will need from Domain Experts , how much time should you

require of them for each of these responsibilities?
• Event Storming sessions should be limited to a few hours (two or three) each. You may need to

hold sessions on consecutive days, such as for three or four days.
• Block out generous amounts of time for scenario discussion and refinement, but try to maximize

the time for each scenario. You should be able to discuss and iterate on one scenario over
perhaps 10 to 20 minutes of time.

• For tests, you will need some time with Domain Experts to review what you have written. But
don’t expect them to sit there as you write the code. Maybe they will, and that’s a bonus, but
don’t expect it. Accurate models require less time to review and verify. Don’t underestimate the
ability of Domain Experts to read through a test with your help. They can do it, especially if the
test data is realistic. Your tests should allow the Domain Expert to understand and verify
around one test every one to two minutes, or thereabouts.

• During test reviews, Domain Experts can provide input on Aggregates , Commands , and
Domain Events , and perhaps other artifacts, as to how they adhere to the Ubiquitous
Language. This can be accomplished in brief amounts of time.

This guidance should help you use just the right amount of time with Domain Experts , and to limit the
amount of time that you need to spend with them.

Summary
In summary, in this chapter you learned:

• About Event Storming , how it can be used, and how to perform sessions with your team, all
with a view to accelerating your modeling efforts

• About other tools that can be used along with Event Storming
• How to use DDD on a project and how to manage estimates and the time you need with Domain

Experts
For an exhaustive reference covering the implementation of DDD on projects, see Implementing
Domain-Driven Design [IDDD] .

References

[BDD] North, Dan. “Behavior-Driven Development.” 2006.
http://dannorth.net/introducing-bdd/ .

[Causal] Lloyd, Wyatt, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. “Don’t
Settle for Eventual Consistency: Stronger Properties for Low-Latency Geo-replicated Storage.”
http://queue.acm.org/detail.cfm?id=2610533 .

[DDD] Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Boston: Addison-Wesley, 2004.

[Essential Scrum] Rubin, Kenneth S. Essential Scrum: A Practical Guide to the Most Popular Agile
Process. Boston: Addison-Wesley, 2012.

[IDDD] Vernon, Vaughn. Implementing Domain-Driven Design. Boston: Addison-Wesley, 2013.

[Impact Mapping] Adzic, Gojko. Impact Mapping: Making a Big Impact with Software Products
and Projects. Provoking Thoughts, 2012.

[Microservices] Newman, Sam. Building Microservices. Sebastopol, CA: O’Reilly Media, 2015.

[Reactive] Vernon, Vaughn. Reactive Messaging Patterns with the Actor Model: Applications and
Integration in Scala and Akka. Boston: Addison-Wesley, 2015.

[RiP] Webber, Jim, Savas Parastatidis, and Ian Robinson. REST in Practice: Hypermedia and
Systems Architecture. Sebastopol, CA: O’Reilly Media, 2010.

[Specification] Adzic, Gojko. Specification by Example: How Successful Teams Deliver the Right
Software. Manning Publications, 2011.

[SRP] Wikipedia. “Single Responsibility Principle.”
http://en.wikipedia.org/wiki/Single_responsibility_principle .

[SWOT] Wikipedia. “SWOT Analysis.”
https://en.wikipedia.org/wiki/SWOT_analysis .

[User Story Mapping] Patton, Jeff. User Story Mapping: Discover the Whole Story, Build the Right
Product. Sebastopol, CA: O’Reilly Media, 2014.

[WSJ] Andreessen, Marc. “Why Software Is Eating the World.” Wall Street Journal , August 20,
2011.

[Ziobrando] Brandolini, Alberto. “Introducing EventStorming.”
https://leanpub.com/introducing_eventstorming .

http://dannorth.net/introducing-bdd/
http://queue.acm.org/detail.cfm?id=2610533
http://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/SWOT_analysis
https://leanpub.com/introducing_eventstorming

Index

A
Abstractions

modeling Aggregates, 93 –95
software design problems, 5

Acceleration and management tools
Event Storming, 112 –124
managing DDD projects. See Managing DDD on Agile Project
other tools, 124
overview of, 111 –112
summary, 136

Acceptance tests
implementing DDD on Agile Project, 134
using with Event Storming, 124
validating domain model, 39 –40

Accuracy, managing in project, 130 –131
Actor model

caching Aggregates' state, 109
handling transactions, 78
using with DDD, 43

Adapters, 41 –42
Aggregate Root, defined, 77
Aggregates

associating with Commands, 120 –122
choosing abstractions carefully, 93 –95
creating Big Ball of Mud via, 59
designing as testable units, 97 –98
Domain Experts refining, 134 –136
Event Sourcing Domain Events for, 107 –109
identifying tasks/estimating effort, 129 –131
integrating using messaging, 65 –70
modeling, 88 –93
overview, 75
right-sizing, 95 –97
scenario using, 104 –105
summary, 98
in tactical design, 8 –9
transactions and, 78 –81
why they are used, 76 –78

Aggregates, design rules

commit one instance in one transaction, 79 –81
protect business invariants within boundaries, 82
reference by identity only, 84 –85
small size, 83 –84
update with eventual consistency, 85 –88

Agile Project Management Context
and Context Mapping, 52
modeling abstractions for Aggregates, 93 –5
moving concepts to other Bounded Contexts, 51

Anemic Domain Model, avoiding in Aggregates, 88 –89 , 92
Anticorruption Layer

Context Mapping, 56 –57
integrating with Big Ball of Mud via, 60
in Open Host Service, 57
RPC with SOAP using, 62

Application Services
Bounded Contexts architecture, 42
modeling Aggregates, 89

Architecture, Bounded Contexts, 41 –43
Arrowheads, in Event Storming, 123
Asynchronous messaging, 65 –70
At-Least-Once Delivery, messaging pattern, 68 –69
Atomic database transactions, 78 –79

B
Bad design, in software development, 3 –7
Behavior-Driven Development (BDD), Ubiquitous Language, 39
Big Ball of Mud

case study, 21 –24
Context Mapping and, 59 –60
turning new software into, 17
using business experts to avoid, 18 –20
using Subdomains for legacy systems, 48 –49

Big-picture Event Storming, 114
Black marker pens, for Event Storming, 115 , 122 –123
Book Design: A Practical Introduction (Martin), 5 –6
Boundaries, Aggregate

design steps for right-sizing, 95 –97
protecting business invariants within, 82
transactional consistency and, 78 –81

Bounded Contexts

aligning with single Subdomain, 49 –50
architectural components of, 41 –43
case study, 21 –24

drawing boundaries in Event Storming, 122 –124
Context Mapping between. See Context Mapping
as fundamental strategic design tool, 25 –29
modeling business policies into separate, 20
showing flow on modeling surface in Event Storming, 122 –123
in strategic design, 7 –8
Subdomains in. See Subdomains
in tactical design, 9
teams and source code repositories for, 14
understanding, 11 –14

Brandolini, Alberto, 112 –113
Business

Aggregate boundaries protecting invariants of, 82 , 95 –96
Domain Expert focus on, 17 –20 , 27 –29
Event Storming focus on, 113
Event Storming process via Domain Events, 116 –118
eventual consistency driven by, 97
focus on complexity of, 29
leaking logic when modeling Aggregates, 89
software design vs. purposes of, 4 –5
Subdomains within domains of, 46
unit testing vs. validating specifications for, 97 –98

C
Caching, Aggregate performance, 109
Causal consistency, Domain Events for, 99 –100
Challenge, 29
Claims, 19 –20 , 70 –73
Classes, 90 –94
Collaboration Context

challenging/unifying mental models, 33
and Context Mapping, 52

Command Message, 67
Command Query Responsibility Segregation (CQRS), 43 , 109
Commands, Event Storming

associate Entity/Aggregate to, 120 –122
causing Domain Events, 118 –120
Domain Events vs., 107

identifying tasks/estimating effort, 129 –131
using Domain Experts to refine, 134 –136

Complex behavior, modeling Aggregates, 93
Complexity, Domain-Driven Design reducing, 2 –3
Conformist

Context Mapping, 56
Domain Event consumers and, 67
in Open Host Service, 57
RESTful HTTP mistakes and, 64

Context Mapping
defined, 52
example in, 70 –73
making good use of, 60 –61
overview of, 51 –53
in problem space, 12
strategic design with, 8
summary, 73
using messaging, 65 –70
using RESTful HTTP, 63 –65
using RPC with SOAP, 61 –63

Context Mapping, types of
Anticorruption Layer, 56 –57
Big Ball of Mud, 59 –60
Conformist, 56
Customer-Supplier, 55 –56
Open Host Service, 57
Partnership, 54
Published Language, 58
Separate Ways, 58
Shared Kernel, 55

Core concepts
Bounded Contexts for, 25 –26
case study, 21 –24

Core Domain
challenging/unifying mental models to create, 29 –34
and Context Mapping, 52
dealing with complexity, 47 –50
defined, 12
developing Ubiquitous Language, 34 –41
Event Sourcing saving record of occurrences in, 109
Event Storming to understand, 113 –114

solution space implementing, 12
as type of Subdomain within project, 46 –47
Ubiquitous Language maintenance vs., 41
understanding, 13

Cost
Event Storming advantages, 113
false economy of no design, 5
software design vs. affordable, 4 –5

Could computing, using with DDD, 43
Coupled services, software design vs. strongly, 5
CQRS (Command Query Responsibility Segregation), 43 , 109
Customer-Supplier Context Mapping, 55 –56

D
Database

atomic transactions, 78 –79
software design and, 4 –5

DDD (Domain-Driven Design)
complexity of, 2 –3
good, bad and effective design, 3 –7
learning process and refining knowledge, 9 –10
managing. See Managing DDD on Agile Project
overview of, 1 –2
strategic design, 7 –8
tactical design, 8 –9

DELETE operation, RESTful HTTP, 63 –65
Design-level modeling, Event Storming, 114
Diagrams, 36
Domain Events

Context Mapping example, 70 –73
creating interface, 101
enriching with additional data, 104
Event Sourcing and, 107 –109
going asynchronous with REST, 65
in messaging, 65 –70
naming types of, 101 –102
properties, 103 –104
scenario using, 104 –107
summary, 109 –110
in tactical design, 9 , 99 –100

Domain Events, Event Storming

associate Entity/Aggregate to Command, 120 –122
create Commands causing, 118 –120
creating for business process, 116 –118
identifying tasks/estimating effort, 129 –131
identifying views/roles for users, 123 –124
showing flow on modeling surface, 122 –123
using Domain Experts to refine, 134 –136

Domain Experts
business drivers and, 17 –20
developing Ubiquitous Language as scenarios, 35 –41
focus on business complexity, 28
identifying core concepts, 26 –29
implementing DDD on Agile Project, 133 –134
interacting with, 134 –136
modeling abstractions for Aggregates, 93 –95
for one or more Subdomains, 46
in rapid design. See Event Storming
right-sizing Aggregates, 95 –96
Scrum, 27
in strategic design, 7 –8

E
Effective design, 6 –7
Effort, estimating for Agile Project, 129 –131
Enrichment, Domain Event, 71 –72
Entities

Aggregates composed of, 77
associating with Commands, 120 –122
defined, 76
implementing Aggregate design, 90 –91
right-sizing Aggregates, 95
Value Objects describing/quantifying, 77

Estimates
managing tasks in Agile Project, 129 –131
timeboxed modeling of tasks via, 132 –134

Event-driven architecture, with DDD, 42 , 112 –113
Event Sourcing

in atomic database transactions, 78 –79
overlap between Event Storming and, 121 –122
persisting Domain Events for Aggregates, 107 –109

Event Storming

advantages of, 113 –114
associate Entity/Aggregate to Command, 120 –122
Commands causing Domain Events, 118 –120
concrete scenarios, 35
Domain Events for business process, 116 –118
Domain Experts for, 134
event-driven modeling vs., 112 –113
identify tasks/estimate effort, 129 –131
identify views/roles for users, 123 –124
implement DDD on Agile Project, 133 –134
modeling spikes on DDD projects via, 129
other tools used with, 124
show flow on modeling surface, 122 –123
supplies needed for, 115 –116

Events, in Event Storming, 113 , 115
Eventual consistency

right-sizing Aggregates, 97
updating Aggregates, 85 –88
working with, 88
working with scenarios, 38

F
Functional programming, modeling Aggregates, 89

G
Generic Subdomain, 47
GET operation

Context Mapping example, 72
integration using RESTful HTTP, 63 –65

Globally unique identity, Aggregate design, 90 –91
Good design, software development, 3 –7

I
IDDD Workshop, 3
Idempotent Receiver, messaging, 68
Impact Mapping, 124
Implementing Domain-Driven Design (IDDD), Vaughn, 1 , 3
Input Adapters, Bounded Contexts architecture, 42
Inspections policy, 19 –20
Iterations

accuracy of long-term estimates for, 131
identifying tasks/estimating effort, 130

implementing DDD on Agile Project, 134
incurring modeling debt during, 128 –129
as sprints, 126

K
Knowledge, 9 –10
Knowledge acquisition, 4 –5 , 6

L
Language

evolution of terminology in human, 15
Ubiquitous. See Ubiquitous Language

Latency
in message exchange, 65
RESTful HTTP failures due to, 64

Learning process, refining knowledge in, 9 –10
Legacy systems, using Subdomains with, 47 –50

M
Maintenance phase, Ubiquitous Language, 40 –41
Managing DDD on Agile Project

accuracy and, 130 –131
Event Storming, 112 –124
hiring good people, 126
how to implement, 133 –134
identifying tasks/estimating effort, 129 –131
interacting with Domain Experts, 134 –136
modeling spikes/debt, 128 –129
other tools, 124
overview of, 125 –126
summary, 136
timeboxed modeling, 132 –134
using SWOT analysis, 127 –128

Martin, Douglas, 5 –6
Memory footprint, designing small Aggregates, 83
Messaging, 65 –70
Metrics-based approach, identify tasks/estimate effort, 129 –131
Microservices, using with DDD, 43
Modeling

debt and spikes on DDD projects, 128 –129
development of roads and, 6

overview of, 1
Modules, segregating Subdomains into, 50

N
Naming

of Aggregates, 91 –92
of Domain Event types, 101 –102
Domain Experts refining Aggregate, 134 –136
Root Entity of Aggregate, 78

Network providers, RESTful HTTP failures due to, 64
No Design, false economy of, 5
No Estimates approach, 125
Nouns, in Ubiquitous Language, 34 –36

O
Object-oriented programming, Aggregates, 88 –89 , 91 –92
Open Host Service

consuming Published Language, 58
Context Mapping, 57
RESTful HTTP using, 63
RPC with SOAP using, 62

Opportunities, identifying Agile Project, 127 –128
Output Adapters, Bounded Contexts architecture, 42

P
Paper, conducting Event Storming on, 115 –116
Parallel processing, Event Storming of business process, 117
Partnership Context Mapping, 54
Performance, caching and snapshots for, 109
Persistence operations, software design vs., 5
Persistence store, Aggregates by identity for, 85
Pictures, in domain model development, 36
Policies

business group, 18 –20
Context Mapping example of, 70 –73
segregating into Bounded Contexts, 20

Ports, using with DDD, 41 –42
POST operation, RESTful HTTP, 63 –65
Problem space

Bounded Contexts in, 12
Event Storming advantages for, 114
overview of, 12

using Subdomains for discussing, 47
Process, Event Storming of business, 117
Product owner, Scrum, 27 , 119
Properties, Domain Event, 103 –104
Published Language

in Context Mapping, 58
integrating bounded contexts via, 67
RESTful HTTP using, 63
RPC with SOAP using, 62

PUT operation, RESTful HTTP, 63 –65

Q
Query-back trade-offs, Domain Events, 71 –72

R
Rapid design. See Event Storming
Reactive Model, using with DDD, 43
Reference by identity only, Aggregates, 84 –85
References, used in this book, 137 –138
Remote Procedure Calls (RPC) with SOAP, 61 –63
Representational State Transfer (REST), 43 , 65
Request-Response communications, messaging, 69 –70
REST in Practice (RIP), 63 –65
REST (Representational State Transfer), 43 , 65
RESTful HTTP, 63 –65 , 72
Roads, modeling of, 6
Robustness, RPC lacking, 62
Roles, identifying for users in Event Storming, 123 –124
Root Entity, Aggregate

defined, 78
implementing Aggregate design, 90 –91
right-sizing, 95

RPC (Remote Procedure Calls) with SOAP, 61 –63

S
Scenarios

developing Ubiquitous Language as, 35 –38
implementing DDD on Agile Project, 133 –134
include Domain Experts in, 134 –136
putting to work, 38 –40

Scrum

criticisms of, 125 –126
DDD Domain Expert vs. product owner in, 27
good, bad and effective design in, 3 –7
managing project. See Managing DDD on Agile Project

Semantic contextual boundaries, Bounded Contexts, 12
Separate Ways Context Mapping, 58
Service-Oriented Architecture (SOA), 43
Services, Open Host Service, 57
Shared Kernel Context Mapping, 55
Simple Object Access Protocol (SOAP), using RPC with, 61 –63
Single Responsibility Principle (SRP), Aggregates, 84
Size. See Boundaries, Aggregate
Snapshots, of Aggregate performance, 109
SOA (Service-Oriented Architecture), 43
SOAP (Simple Object Access Protocol), using RPC with, 61 –63
Software developers

developing Ubiquitous Language as scenarios, 35 –41
Domain Experts vs., 26 –29
finding good, 126
rapid design for. See Event Storming

Solution space
Bounded Contexts used in, 12
overview of, 12
segregating Subdomain in, 50

Source code repositories, for Bounded Contexts, 14
Specification (Adzic), 124
Specification by Example, refining Ubiquitous Language, 39
Sprints

accuracy of long-term estimates for, 131
identifying tasks/estimating effort, 130
incurring modeling debt during, 128 –129

SRP (Single Responsibility Principle), Aggregates, 84
Stakeholders, software design vs., 4 –5
Sticky notes, Event Storming

associate Entity/Aggregate to Command, 121 –122
create Commands causing Domain Events, 118 –120
defined, 113
Domain Events for business process, 116 –117
identifying roles for users, 124
overview of, 115 –116
showing flow on modeling surface, 123

Storage, referencing Aggregates by identity for, 85
Strategic design

architectural components, 41 –43
Bounded Contexts in, 11 –17
case study, 21 –24
challenging assumptions/unifying mental models, 29 –34
with Context Mapping. See Context Mapping
Domain Experts and business drivers in, 17 –20
focus on business complexity, 28
fundamental need for, 25 –29
with Subdomains. See Subdomains
summary, 43
Ubiquitous Language in, 11 –17 , 34 –41
understanding, 7 –8

Strengths, identifying Agile Project, 127 –128
Subdomains

for complexity, 47 –50
overview of, 45 –46
showing flow in Event Storming, 122 –123
strategic design with, 7 –8
summary, 50
types of, 46 –47
understanding, 46

Supplies, for Event Storming, 115 –116
Supporting Domain, 47 , 50
SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis, Agile Projects, 127 –128

T
Tactical design

with Aggregates. See Aggregates
with Domain Events. See Domain Events
understanding, 8 –9

Taskboard shuffle
project estimates/use of, 5
software design vs., 3 –4
tendency to design using, 126

Tasks
identifying/estimating in Agile Project, 129 –131
timeboxed modeling of, 132 –133

Teams
assigning to each Bounded Context, 14

Conformist relationship between, 56
Context Mapping integrating, 53
Customer-Supplier relationship between, 55 –56
Event Storming advantages for, 113 –114
Partnership relationship between, 54
Shared Kernel relationship between, 55
Ubiquitous Language spoken within, 13 –14

Technology
Context Mapping integrating, 53
keeping domain model free of, 42
modeling Aggregates, 90
software design vs., 4 –5

Testing
as benefit of Bounded Contexts, 25
designing Aggregrates for, 97 –98
implementing DDD on Agile Project, 134
using Domain Experts in, 136
validating domain model, 39 –40

Threats, identifying Agile Project, 127 –128
Timeline control, Scrum for, 4 –5
Transactional consistency boundary, Aggregates, 78 –81
Transactions, Aggregates, 78 –81 , 83 –84

U
Ubiquitous Language

advantages of Event Storming, 113
in Anticorruption Layer Context Mapping relationship, 56 –57
challenging/unifying mental models to create, 29 –34
in Conformist Context Mapping relationship, 56
for Core Domain, 46 –47
developing, 34 –41
developing by collaborative feedback loop, 29
as fundamental strategic design tool, 25 –29
maintenance phase of, 40 –41
modeling abstractions for Aggregates, 93 –95
modeling Aggregates, 93
naming Domain Event types, 101 –102
in strategic design, 7
understanding, 11 , 13 –14
using Domain Experts to refine, 134 –136

Ubiquitous Languages

integrating different, 53
Separate Ways Context Mapping and, 58
translating with Published Languages, 58

UML (Unified Modeling Language), 90 , 112 –113
Unbounded legacy systems, complexity of, 48
Underwriting, Context Mapping example, 70 –73
Underwriting policy, 19 –20
Unit testing, 40 , 97 –98
Updates, Aggregate, 85 –88 , 96 –97
User interface, abstractions for Aggregates, 94
User role, Event Storming, 119
User Story Mapping, Event Storming, 124
User Story Mapping (Patton), 124

V
Value Objects, and Aggregates, 77 , 91
Views, for users in Event Storming, 123 –124

W
Wall, conducting Event Storming on, 115
Weaknesses, identifying Agile Project, 127 –128
Whack-a-mole issues, Big Ball of Mud, 59
Who? in Ubiquitous Language development, 36 –38
Work in progress (WIP)

accuracy of long-term estimates for, 131
identifying tasks/estimating effort, 130
incurring modeling debt during, 128 –129
sprints as, 126

Code Snippets

	About This E-Book
	Title Page
	Copyright Page
	Dedication Page
	Contents
	Preface
	Who Is This Book For?
	What This Book Covers
	Conventions

	Acknowledgments
	About the Author
	Chapter 1. DDD for Me
	Will DDD Hurt?
	Good, Bad, and Effective Design
	Strategic Design
	Tactical Design
	The Learning Process and Refining Knowledge
	Let’s Get Started!

	Chapter 2. Strategic Design with Bounded Contexts and the Ubiquitous Language
	Domain Experts and Business Drivers
	Case Study
	Fundamental Strategic Design Needed
	Challenge and Unify
	Developing a Ubiquitous Language
	Putting Scenarios to Work
	What about the Long Haul?

	Architecture
	Summary

	Chapter 3. Strategic Design with Subdomains
	What Is a Subdomain?
	Types of Subdomains
	Dealing with Complexity
	Summary

	Chapter 4. Strategic Design with Context Mapping
	Kinds of Mappings
	Partnership
	Shared Kernel
	Customer-Supplier
	Conformist
	Anticorruption Layer
	Open Host Service
	Published Language
	Separate Ways
	Big Ball of Mud

	Making Good Use of Context Mapping
	RPC with SOAP
	RESTful HTTP
	Messaging

	An Example in Context Mapping
	Summary

	Chapter 5. Tactical Design with Aggregates
	Why Used
	Aggregate Rules of Thumb
	Rule 1: Protect Business Invariants inside Aggregate Boundaries
	Rule 2: Design Small Aggregates
	Rule 3: Reference Other Aggregates by Identity Only
	Rule 4: Update Other Aggregates Using Eventual Consistency

	Modeling Aggregates
	Choose Your Abstractions Carefully
	Right-Sizing Aggregates
	Testable Units

	Summary

	Chapter 6. Tactical Design with Domain Events
	Designing, Implementing, and Using Domain Events
	Event Sourcing
	Summary

	Chapter 7. Acceleration and Management Tools
	Event Storming
	Other Tools

	Managing DDD on an Agile Project
	First Things First
	Use SWOT Analysis
	Modeling Spikes and Modeling Debt
	Identifying Tasks and Estimating Effort

	Timeboxed Modeling
	How to Implement
	Interacting with Domain Experts

	Summary

	References
	Index
	Code Snippets

