
D
om

ain-D
riven D

esign Q
uickly

FREE ONLINE EDITION
(non-printable free online version)

If you like the book, please support

the author and InfoQ by

purchasing the printed book:
http://www.lulu.com/content/325231

(only $30.00)

Brought to you

Courtesy of

This book is distributed for free on InfoQ.com, if
you have received this book from any other

source then please support the author and the
publisher by registering on InfoQ.com.

Visit the homepage for this book at:

http://www.infoq.com/minibooks/domain-

driven-design-quickly

Domain-Driven Design

Quickly

Free Online Version.

Support this work, buy the print copy:
http://www.infoq.com/minibooks/domain-driven-

design-quickly

© 2006 C4Media Inc.

All rights reserved.

C4Media, Publisher of InfoQ.com Enterprise Software Development
Community

Part of the InfoQ Enterprise Software Development series of books.

For information or ordering of this or other InfoQ books, please contact
books@c4media.com.

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronical,
mechanical, photocopying, recording, scanning or otherwise except as
permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher.

Designations used by companies to distinguish their products are
often claimed as trademarks. In all instances where C4MEdia Inc. is
aware of a claim, the product names appear in initial Capital or ALL
CAPITAL LETTERS.

Readers, however, should contact the appropriate companies for more
complete information regarding trademarks and registration.

Some of the diagrams used in this book were reproduced with
permission, under Creative Commons License, courtesy of: Eric

Evans, DOMAIN-DRIVEN DESIGN, Addison-Wesley, Eric Evans,
2004.

Cover page image republished under Creative Commons License,
courtesy of: Eric Evans, DOMAIN-DRIVEN DESIGN, Addison-Wesley,

 Eric Evans, 2004.

Production Credits:
DDD Summary by: Abel Avram
Managing Editor: Floyd Marinescu
Cover art: Gene Steffanson
Composition: Laura Brown and Melissa Tessier
Special thanks to Eric Evans.

Library of Congress Cataloging-in-Publication Data:

ISBN: 978-1-4116-0925-9

Printed in the United States of America

10 9 8 7 6 5 3 2 1

Contents

Preface: Why DDD Quickly?... iv

Introduction ..1

What Is Domain-Driven Design...3

Building Domain Knowledge ..8

The Ubiquitous Language..13

The Need for a Common Language13

Creating the Ubiquitous Language...16

Model-Driven Design...23

The Building Blocks Of A Model-Driven Design28

Layered Architecture..29

Entities ...31

Value Objects ...34

Services ..37

Modules..40

Aggregates..42

Factories ...46

Repositories..51

Refactoring Toward Deeper Insight...57

Continuous Refactoring ...57

Bring Key Concepts Into Light ..59

Preserving Model Integrity ..67

Bounded Context..69

Continuous Integration...71

Context Map...73

Shared Kernel...75

Customer-Supplier ...76

Conformist ...79

Anticorruption Layer..80

Separate Ways..83

Open Host Service..84

Distillation..85

DDD Matters Today: An interview with Eric Evans.................91

Preface: Why DDD Quickly?

 first heard about Domain Driven Design and met Eric Evans at

a small gathering of architects at a mountain summit organized

by Bruce Eckel in the summer of 2005. The summit was

attended by a number of people I respect, including Martin

Fowler, Rod Johnson, Cameron Purdy, Randy Stafford, and

Gregor Hohpe.

The group seemed quite impressed with the vision of Domain

Driven Design, and was eager to learn more about it. I also got

the feeling that everyone wished that these concepts were more

mainstream. When I noticed how Eric used the domain model to

discuss solutions to some of the various technical challenges the

group discussed, and how much emphasis he placed on the

business domain instead of technology-specific hype, I knew

right away that this vision is one that the community sorely

needed.

We, in the enterprise development community, especially the

web development community, have been tainted by years of

hype that took us away from proper object oriented software

development. In the Java community, good domain modeling

was lost in the hype of EJB and the container/component models

of 1999-2004. Luckily, shifts in technology and the collective

experiences of the software development community are moving

us back towards traditional object oriented paradigms. However,

the community is lacking a clear vision for how to apply object

orientation on an enterprise scale, which is why I think DDD is

important.

Unfortunately, outside of a small group of the most senior

architects, I perceived that very few people were aware of DDD,

which is why InfoQ commissioned the writing of this book.

I

It is my hope that by publishing a short, quickly-readable

summary and introduction to the fundamentals of DDD and

making it freely downloadable on InfoQ with an inexpensive

pocket-sized print version, this vision can become mainstream.

This book does not introduce any new concepts; it attempts to

concisely summarize the essence of what DDD is, drawing

mostly on Eric Evans’ original book on the subject, as well other

sources since published such as Jimmy Nilsson’s Applying DDD

and various DDD discussion forums. The book will give you a

crash course on the fundamentals of DDD, but it is no substitute

for the numerous examples and case studies provided in Eric’s

book or the hands-on examples provided in Jimmy’s book. I

highly encourage you to read both of these excellent works. In

the meantime, if you agree that the community needs DDD to be

part of our group consciousness, please let people know about

this book and Eric’s work.

Floyd Marinescu

Co-founder & Chief Editor of InfoQ.com

 1

Introduction

oftware is an instrument created to help us deal with the

complexities of our modern life. Software is just the means to an

end, and usually that end is something very practical and real.

For example, we use software for air traffic control, and this is

directly related to the world surrounding us. We want to fly from

one place to another, and we do that using sophisticated

machineries, so we create software to coordinate the flight of

thousands of airplanes which happen to be in the air at any time.

Software has to be practical and useful; otherwise we would not

invest so much time and resources into its creation. That makes

it extremely connected to a certain aspect of our lives. A useful

package of software cannot be decoupled from that sphere of

reality, the domain it is supposed to help us manage. On the

contrary, the software is deeply entangled with it.

Software design is an art, and like any art it cannot be taught and

learned as a precise science, by means of theorems and formulas.

We can discover principles and techniques useful to be applied

throughout the process of software creation, but we probably

won’t ever be able to provide an exact path to follow from the

real world need to the code module meant to serve that need.

Like a picture or a building, a software product will include the

personal touch of those who designed and developed it,

something of the charisma and flair (or the lack of it) of those

who contributed to its inception and growth.

There are different ways to approach software design. For the

last 20 years, the software industry has known and used several

methods to create its products, each with its advantages and

shortcomings. The purpose of this book is to focus on a design

S

Free Online Version.

Support this work, buy the print copy:
http://www.infoq.com/minibooks/domain-driven-

design-quickly

hujifeng
高亮

hujifeng
高亮

2│DOMAIN DRIVEN DESIGN QUICKLY

method which has emerged and evolved over the last two

decades, but has crystallized more clearly during the last few

years: domain-driven design. Eric Evans has made a great

contribution to this subject matter by writing down in one book

much of the accumulated knowledge about domain-driven

design. For a more detailed presentation of this topic, we

recommend reading his book “Domain-Driven Design: Tackling

Complexity in the Heart of Software”, published by Addison-

Wesley, ISBN: 0-321-12521-5.

Many valuable insights can also be learned by following the

Domain Driven Design discussion group at:

http://groups.yahoo.com/group/domaindrivendesign

This book is only an introduction to the topic, intended to

quickly give you a fundamental, but not a detailed understanding

of Domain Driven Design. We just want to whet your appetite

for good software design with the principles and guidelines used

in the world of domain-driven design.

hujifeng
高亮

hujifeng
高亮

1

 3

What Is Domain-Driven Design

oftware development is most often applied to automating

processes that exist in the real world, or providing solutions to

real business problems; The business processes being automated

or real world problems that the software is the domain of the

software. We must understand from the beginning that software

is originated from and deeply related to this domain.

Software is made up of code. We might be tempted to spend too

much time with the code, and view the software as simply

objects and methods.

Consider car manufacturing as a metaphor. The workers

involved in auto manufacturing may specialize in producing

parts of the car, but in doing so they often have a limited view of

the entire car manufacturing process. They start viewing the car

as a huge collection of parts which need to fit together, but a car

is much more than that. A good car starts with a vision. It starts

with carefully written specifications. And it continues with

design. Lots and lots of design. Months, maybe years of time

spent on design, changing and refining it until it reaches

perfection, until it reflects the original vision. The processing

design is not all on paper. Much of it includes doing models of

the car, and testing them under certain conditions to see if they

work. The design is modified based on the testing results. The

car is sent to production eventually, and the parts are created and

assembled together.

S

Free Online Version.

Support this work, buy the print copy:
http://www.infoq.com/minibooks/domain-driven-

design-quickly

4│DOMAIN DRIVEN DESIGN QUICKLY

Software development is similar. We can’t just sit down and

type code. We can do that, and it works well for trivial cases .

But we cannot create complex software like that.

In order to create good software, you have to know what that

software is all about. You cannot create a banking software

system unless you have a good understanding of what banking is

all about, one must understand the domain of banking.

Is it possible to create complex banking software without good

domain knowledge? No way. Never. Who knows banking? The

software architect? No. He just uses the bank to keep his money

safe and available when he needs them. The software analyst?

Not really. He knows to analyze a given topic, when he is given

all the necessary ingredients. The developer? Forget it. Who

then? The bankers, of course. The banking system is very well

understood by the people inside, by their specialists. They know

all the details, all the catches, all the possible issues, all the rules.

This is where we should always start: the domain.

When we begin a software project, we should focus on the

domain it is operating in. The entire purpose of the software is to

enhance a specific domain. To be able to do that, the software

has to fit harmoniously with the domain it has been created for.

Otherwise it will introduce strain into the domain, provoking

malfunction, damage, and even wreak chaos.

How can we make the software fit harmoniously with the

domain? The best way to do it is to make software a reflection of

the domain. Software needs to incorporate the core concepts and

elements of the domain, and to precisely realize the relationships

between them. Software has to model the domain.

Somebody without knowledge of banking should be able to learn

a lot just by reading the code in a domain model. This is

essential. Software which does not have its roots planted deeply

into the domain will not react well to change over time.

So we start with the domain. Then what? A domain is something

of this world. It cannot just be taken and poured over the

hujifeng
高亮

hujifeng
高亮

hujifeng
高亮

hujifeng
高亮

WHAT IS DOMAIN DRIVEN DESIGN│5

keyboard into the computer to become code. We need to create

an abstraction of the domain. We learn a lot about a domain

while talking with the domain experts. But this raw knowledge is

not going to be easily transformed into software constructs,

unless we build an abstraction of it, a blueprint in our minds. In

the beginning, the blueprint is always incomplete. But in time,

while working on it, we make it better, and it becomes more and

more clear to us. What is this abstraction? It is a model, a model

of the domain. According to Eric Evans, a domain model is not a

particular diagram; it is the idea that the diagram is intended to

convey. It is not just the knowledge in a domain expert’s head; it

is a rigorously organized and selective abstraction of that

knowledge. A diagram can represent and communicate a model,

as can carefully written code, as can an English sentence.

The model is our internal representation of the target domain,

and it is very necessary throughout the design and the

development process. During the design process we remember

and make lots of references to the model. The world around us is

way too much for our heads to handle. Even a specific domain

could be more than a human mind can handle at one time. We

need to organize information, to systematize it, to divide it up in

smaller pieces, to group those pieces into logical modules, and

take one at a time and deal with it. We even need to leave some

parts of the domain out. A domain contains just too much

information to include it all into the model. And much of it is not

even necessary to be considered. This is a challenge by itself.

What to keep and what to throw away? It’s part of the design,

the software creation process. The banking software will surely

keep track of the customer’s address, but it should not care about

the customer’s eye color. That is an obvious case, but other

examples might not be so obvious.

A model is an essential part of software design. We need it in

order to be able to deal with complexity. All our thinking

process about the domain is synthesized into this model. That’s

good, but it has to come out of our head. It is not very useful if it

remains in there, is it? We need to communicate this model with

domain experts, with fellow designers, and with developers. The

6│DOMAIN DRIVEN DESIGN QUICKLY

model is the essence of the software, but we need to create ways

to express it, to communicate it with others. We are not alone in

this process, so we need to share knowledge and information,

and we need to do it well, precisely, completely, and without

ambiguity. There are different ways to do that. One is graphical:

diagrams, use cases, drawings, pictures, etc. Another is writing.

We write down our vision about the domain. Another is

language. We can and we should create a language to

communicate specific issues about the domain. We will detail all

these later, but the main point is that we need to communicate

the model.

When we have a model expressed, we can start doing code

design. This is different from software design. Software design

is like creating the architecture of a house, it’s about the big

picture. On the other hand, code design is working on the details,

like the location of a painting on a certain wall. Code design is

also very important, but not as fundamental as software design.

A code design mistake is usually more easily corrected, while

software design errors are a lot more costly to repair. It’s one

thing to move a painting more to the left, and a completely

different thing to tear down one side of the house in order to do

it differently. Nonetheless the final product won’t be good

without good code design. Here code design patterns come

handy, and they should be applied when necessary. Good coding

techniques help to create clean, maintainable code.

There are different approaches to software design. One is the

waterfall design method. This method involves a number of

stages. The business experts put up a set of requirements which

are communicated to the business analysts. The analysts create a

model based on those requirements, and pass the results to the

developers, who start coding based on what they have received.

It’s a one way flow of knowledge. While this has been a

traditional approach in software design, and has been used with a

certain level of success over the years, it has its flaws and limits.

The main problem is that there is no feedback from the analysts

to the business experts or from the developers to the analysts.

WHAT IS DOMAIN DRIVEN DESIGN│7

Another approach is the Agile methodologies, such as Extreme

Programming (XP). These methodologies are a collective

movement against the waterfall approach, resulting from the

difficulties of trying to come up with all the requirements

upfront, particularly in light of requirements change. It’s really

hard to create a complete model which covers all aspects of a

domain upfront. It takes a lot of thinking, and often you just

cannot see all the issues involved from the beginning, nor can

you foresee some of the negative side effects or mistakes of your

design. Another problem Agile attempts to solve is the so called

“analysis paralysis”, with team members so afraid of making any

design decisions that they make no progress at all. While Agile

advocates recognize the importance of design decision, they

resist upfront design. Instead they employ a great deal of

implementation flexibility, and through iterative development

with continuous business stakeholder participation and a lot of

refactoring, the development team gets to learn more about the

customer domain and can better produce software that meets the

customers needs.

The Agile methods have their own problems and limitations;

they advocate simplicity, but everybody has their own view of

what that means. Also, continuous refactoring done by

developers without solid design principles will produce code that

is hard to understand or change. And while the waterfall

approach may lead to over-engineering, the fear of over-

engineering may lead to another fear: the fear of doing a deep,

thoroughly thought out design.

This book presents the principles of domain driven design,

which when applied can greatly increase any development

process' ability to model and implement the complex problems

in the domain in a maintainable way. Domain Driven Design

combines design and development practice, and shows how

design and development can work together to create a better

solution. Good design will accelerate the development, while

feedback coming from the development process will enhance the

design.

8│DOMAIN DRIVEN DESIGN QUICKLY

Building Domain Knowledge

Let’s consider the example of an airplane flight control system

project,and how domain knowledge can be built.

Thousands of planes are in the air at a given moment all over the

planet. They are flying their own paths towards their

destinations, and it is quite important to make sure they do not

collide in the air. We won’t try to elaborate on the entire traffic

control system, but on a smaller subset which is a flight

monitoring system. The proposed project is a monitoring system

which tracks every flight over a certain area, determines if the

flight follows its supposed route or not, and if there is the

possibility of a collision.

Where do we start from a software development perspective? In

the previous section we said that we should start by

understanding the domain, which in this case is air traffic

monitoring. Air traffic controllers are the specialists of this

domain. But the controllers are not system designers or software

specialists. You can’t expect them to hand you a complete

description of their problem domain.

The air traffic controllers have vast knowledge about their

domain, but in order to be able to build up a model you need to

extract essential information and generalize it. When you start

talking to them, you will hear a lot about aircrafts taking off, and

landing, aircrafts in midair and the danger of collision, planes

waiting before being allowed to land, etc. To find order in this

seemingly chaotic amount of information, we need to start

somewhere.

The controller and you agree that each aircraft has a departure

and a destination airfield. So we have an aircraft, a departure and

a destination, as shown in the figure below.

WHAT IS DOMAIN DRIVEN DESIGN│9

OK, the plane takes off from some place and touches down in

another. But what happens in the air? What path of flight does it

go? Actually we are more interested in what happens while it is

airborn. The controller says that each plane is assigned a flight

plan which is supposed to describe the entire air travel. While

hearing about a flight plan, you may think in your mind that this

is about the path followed by the plane while in the air. After

further discussion, you hear an interesting word: route. It

instantly catches your attention, and for a good reason. The route

contains an important concept of flight travel. That’s what

planes do while flying, they follow a route. It is obvious that the

departure and destination points of the aircraft are also the

starting and ending points of the route. So, instead of associating

the aircraft with the departure and destination points, it seems

more natural to associate it with a route, which in turn is

associated with the corresponding departure and destination.

Aircraft Departure Destination

Aircraft Route

Departure

Destination

10│DOMAIN DRIVEN DESIGN QUICKLY

Talking with the controller about the routes airplanes follow,

you discover that actually the route is made up of small

segments, which put together constitute some sort of a crooked

line from departure to destination. The line is supposed to pass

through predetermined fixed points. So, a route can be

considered as a series of consecutive fixes. At this point you no

longer see the departure and destination as the terminal points of

the route, but just another two of those fixes. This is probably

quite different from how the controller sees them, but it is a

necessary abstraction which helps later. The resulting changes

based on these discoveries are:

The diagram shows another element, the fact that each fix is a

point in space followed by the route, and it is expressed as a

three dimensional point. But when you talk to the controller, you

will discover that he does not see it that way. Actually he sees

the route as the projection on earth of the plane flight. The fixes

are just points on Earth surface uniquely determined by their

latitude and longitude. So the correct diagram is:

Aircraft Route Fix
*

3DPoint

WHAT IS DOMAIN DRIVEN DESIGN│11

What is actually happening here? You and the domain experts

are talking, you are exchanging knowledge. You start asking

questions, and they respond. While they do that, they dig

essential concepts out of the air traffic domain. Those concepts

may come out unpolished and disorganized, but nonetheless they

are essential for understanding the domain. You need to learn as

much as possible about the domain from the experts. And by

putting the right questions, and processing the information in the

right way, you and the experts will start to sketch a view of the

domain, a domain model. This view is neither complete nor

correct, but it is the start you need. Try to figure out the essential

concepts of the domain.

This is an important part of the design. Usually there are long

discussions between software architects or developers and the

domain experts. The software specialists want to extract

knowledge from the domain experts, and they also have to

transform it into a useful form. At some point, they might want

to create an early prototype to see how it works so far. While

doing that they may find some issues with their model, or their

approach, and may want to change the model. The

communication is not only one way, from the domain experts to

the software architect and further to the developers. There is also

feedback, which helps create a better model, and a clearer and

more correct understanding of the domain. Domain experts

know their area of expertise well, but they organize and use their

knowledge in a specific way, which is not always the best to be

implemented into a software system. The analytical mind of the

software designer helps unearth some of the key concepts of the

Aircraft Route Fix *

2DPoint

12│DOMAIN DRIVEN DESIGN QUICKLY

domain during discussions with domain experts, and also help

construct a structure for future discussions as we will see in the

next chapter. We, the software specialists (software architects

and developers) and the domain experts, are creating the model

of the domain together, and the model is the place where those

two areas of expertise meet. This might seem like a very time

consuming process, and it is, but this is how it should be,

because in the end the software’s purpose is to solve business

problems in a real life domain, so it has to blend perfectly with

the domain.

2

 13

The Ubiquitous Language

The Need for a Common Language

he previous chapter made the case that it is absolutely necessary

to develop a model of the domain by having the the software

specialists work with the domain experts; however, that

approach usually has some initial difficulties due to a

fundamental communication barrier. The developers have their

minds full of classes, methods, algorithms, patterns, and tend to

always make a match between a real life concept and a

programming artifact. They want to see what object classes to

create and what relationships to model between them. They

think in terms of inheritance, polymorphism, OOP, etc. And they

talk like that all the time. And it is normal for them to do so.

Developers will be developers. But the domain experts usually

know nothing about any of that. They have no idea about

software libraries, frameworks, persistence, in many case not

even databases. They know about their specific area of expertise.

In the air traffic monitoring example, the domain experts know

about planes, about routes, altitudes, longitudes and latitudes,

they know about deviances from the normal route, about plane

trajectories. And they talk about those things in their own jargon,

which sometimes is not so straightforward to follow by an

outsider.

T

Free Online Version.

Support this work, buy the print copy:
http://www.infoq.com/minibooks/domain-driven-

design-quickly

14│DOMAIN DRIVEN DESIGN QUICKLY

To overcome this difference in communication style, when we

build the model, we must communicate to exchange ideas about

the model, about the elements involved in the model, how we

connect them, what is relevant and what is not. Communication

at this level is paramount for the success of the project. If one

says something, and the other does not understand or, even

worse, understands something else, what are the chances for the

project to succeed?

A project faces serious problems when team members don’t

share a common language for discussing the domain. Domain

experts use their jargon while technical team members have their

own language tuned for discussing the domain in terms of

design.

The terminology of day-to-day discussions is disconnected from

the terminology embedded in the code (ultimately the most

important product of a software project). And even the same

person uses different language in speech and in writing, so that

the most incisive expressions of the domain often emerge in a

transient form that is never captured in the code or even in

writing.

During these sessions of communication, translation is often

used to let the others understand what some concepts are about.

Developers might try to explain some design patterns using a

layman’s language, and sometimes without success. The domain

experts will strive to bring home some of their ideas probably by

creating a new jargon. During this process communication

suffers, and this kind of translation does not help the knowledge

building process.

We tend to use our own dialects during these design sessions,

but none of these dialects can be a common language because

none serves everyone’s needs.

We definitely need to speak the same language when we meet to

talk about the model and to define it. What language is it going

to be? The developers’ language? The domain experts’

language? Something in between?

THE UBIQUITOUS LANGUAGE│15

A core principle of domain-driven design is to use a language

based on the model. Since the model is the common ground, the

place where the software meets the domain, it is appropriate to

use it as the building ground for this language.

Use the model as the backbone of a language. Request that the

team use the language consistently in all communications, and

also in the code. While sharing knowledge and hammering out

the model, the team uses speech, writing and diagrams. Make

sure this language appears consistently in all the communication

forms used by the team; for this reason, the language is called

the Ubiquitous Language.

The Ubiquitous Language connects all the parts of the design,

and creates the premise for the design team to function well. It

takes weeks and even months for large scale project designs to

take shape. The team members discover that some of the initial

concepts were incorrect or inappropriately used, or they discover

new elements of the design which need to be considered and fit

into the overall design. All this is not possible without a

common language.

Languages do not appear overnight. It takes hard work and a lot

of focus to make sure that the key elements of the language are

brought to light. We need to find those key concepts which

define the domain and the design, and find corresponding words

for them, and start using them. Some of them are easily spotted,

but some are harder.

Iron out difficulties by experimenting with alternative

expressions, which reflect alternative models. Then refactor the

code, renaming classes, methods, and modules to conform to the

new model. Resolve confusion over terms in conversation, in

just the way we come to agree on the meaning of ordinary

words.

Building a language like that has a clear outcome: the model and

the language are strongly interconnected with one another. A

change in the language should become a change to the model.

16│DOMAIN DRIVEN DESIGN QUICKLY

Domain experts should object to terms or structures that are

awkward or inadequate to convey domain understanding. If

domain experts cannot understand something in the model or the

language, then it is most likely that there is something is wrong

with it. On the other hand, developers should watch for

ambiguity or inconsistency that will tend to appear in design.

Creating the Ubiquitous Language

How can we start building a language? Here is a hypothetical

dialog between a software developer and a domain expert in the

air traffic monitoring project. Watch out for the words appearing

in bold face.

Developer: We want to monitor air traffic. Where do we start?

Expert: Let’s start with the basics. All this traffic is made up of

planes. Each plane takes off from a departure place, and lands

at a destination place.

Developer: That’s easy. When it flies, the plane can just choose

any air path the pilots like? Is it up to them to decide which way

they should go, as long as they reach destination?

Expert: Oh, no. The pilots receive a route they must follow.

And they should stay on that route as close as possible.

Developer: I’m thinking of this route as a 3D path in the air. If

we use a Cartesian system of coordinates, then the route is

simply a series of 3D points.

Expert: I don’t think so. We don’t see route that way. The

route is actually the projection on the ground of the expected air

path of the airplane. The route goes through a series of points on

the ground determined by their latitude and longitude.

THE UBIQUITOUS LANGUAGE│17

Developer: OK, then let’s call each of those points a fix,

because it’s a fixed point of Earth’s surface. And we’ll use then

a series of 2D points to describe the path. And, by the way, the

departure and destination are just fixes. We should not

consider them as separate concepts. The route reaches

destination as it reaches any other fix. The plane must follow the

route, but does that mean that it can fly as high or as low as it

likes?

Expert: No. The altitude that an airplane is to have at a certain

moment is also established in the flight plan.

Developer: Flight plan? What is that?

Expert: Before leaving the airport, the pilots receive a detailed

flight plan which includes all sorts of information about the

flight: the route, cruise altitude, the cruise speed, the type of

airplane, even information about the crew members.

Developer: Hmm, the flight plan seems pretty important to me.

Let’s include it into the model.

Aircraft Flight Plan Route

Fix

2DPoint

18│DOMAIN DRIVEN DESIGN QUICKLY

Developer: That’s better. Now that I’m looking at it, I realize

something. When we are monitoring air traffic, we are not

actually interested in the planes themselves, if they are white or

blue, or if they are Boeing or Airbus. We are interested in their

flight. That’s what we are actually tracking and measuring. I

think we should change the model a bit in order to be more

accurate.

Notice how this team, talking about the air traffic monitoring

domain and around their incipient model, is slowly creating a

language made up by the words in boldface. Also note how that

language changes the model!

However, in real life such a dialog is much more verbose, and

people very often talk about things indirectly, or enter into too

much detail, or choose the wrong concepts; this can make

coming up with the language very difficult. To begin to address

this, all team members should be aware of the need to create a

common language and should be reminded to stay focused on

essentials, and use the language whenever necessary. We should

use our own jargon during such sessions as little as possible, and

we should use the Ubiquitous Language because this helps us

communicate clearly and precisely.

THE UBIQUITOUS LANGUAGE│19

It is also highly recommended for the developers to implement

the main concepts of the model in the code. A class could be

written for Route and another for Fix. The Fix class could inherit

from a 2DPoint class, or could contain a 2DPoint as its main

attribute. That depends on other factors that will be discussed

later. By creating classes for the corresponding model concepts,

we are mapping between the model and the code, and between

the language and the code. This is very helpful as it makes the

code more readable, and makes it reproduce the model. Having

the code express the model pays off later in the project, when the

model grows large, and when changes in the code can have

undesirable consequences if the code was not properly designed.

We have seen how the language is shared by the entire team, and

also how it helps building knowledge and create the model.

What should we use for the language? Just speech? We’ve used

diagrams. What else? Writing?

Some may say that UML is good enough to build a model upon.

And indeed it is a great tool to write down key concepts as

classes, and to express relationships between them. You can

draw four or five classes on a sketchpad, write down their

Flight Flight Plan Route

Fix

2DPoint

20│DOMAIN DRIVEN DESIGN QUICKLY

names, and show the relationships between them. It’s very easy

for everyone to follow what you are thinking, and a graphical

expression of an idea is easy to understand. Everyone instantly

shares the same vision about a certain topic, and it becomes

simpler to communicate based on that. When new ideas come

up, and the diagram is modified to reflect the conceptual change.

UML diagrams are very helpful when the number of elements

involved is small. But UML can grow like mushrooms after a

nice summer rain. What do you do when you have hundreds of

classes filling up a sheet of paper as long as Mississippi? It’s

hard to read even by the software specialists, not to mention

domain experts. They won’t understand much of it when it gets

big, and it does so even for medium size projects.

Also, UML is good at expressing classes, their attributes and

relationships between them. But the classes’ behavior and the

constraints are not so easily expressed. For that UML resorts to

text placed as notes into the diagram. So UML cannot convey

two important aspects of a model: the meaning of the concepts it

represents and what the objects are supposed to do. But that is

OK, since we can add other communication tools to do it.

We can use documents. One advisable way of communicating

the model is to make some small diagrams each containing a

subset of the model. These diagrams would contain several

classes, and the relationship between them. That already

includes a good portion of the concepts involved. Then we can

add text to the diagram. The text will explain behavior and

constraints which the diagram cannot. Each such subsection

attempts to explain one important aspect of the domain, it points

a “spotlight” to enlighten one part of the domain.

Those documents can be even hand-drawn, because that

transmits the feeling that they are temporary, and might be

changed in the near future, which is true, because the model is

changed many times in the beginning before it reaches a more

stable status.

THE UBIQUITOUS LANGUAGE│21

It might be tempting to try to create one large diagram over the

entire model. However, most of the time such diagrams are

almost impossible to put together. And furthermore, even if you

do succeed in making that unified diagram, it will be so cluttered

that it will not convey the understanding better then did the

collection of small diagrams.

Be wary of long documents. It takes a lot of time to write them,

and they may become obsolete before they are finished. The

documents must be in sync with the model. Old documents,

using the wrong language, and not reflecting the model are not

very helpful. Try to avoid them when possible.

It is also possible to communicate using code. This approach is

widely advocated by the XP community. Well written code can

be very communicative. Although the behavior expressed by a

method is clear, is the method name as clear as its body?

Assertions of a test speak for themselves, but how about the

variable names and overall code structure? Are they telling the

whole story, loud and clear? Code, which functionally does the

right thing, does not necessarily express the right thing. Writing

a model in code is very difficult.

There are other ways to communicate during design. It’s not the

purpose of this book to present all of them. One thing is

nonetheless clear: the design team, made up of software

architects, developers, and domain experts, needs a language that

unifies their actions, and helps them create a model and express

that model with code.

3

 23

MODEL-DRIVEN DESIGN

he previous chapters underscored the importance of an approach

to software development that is centered on the business domain.

We said that it is fundamentally important to create a model

which is deeply rooted in the domain, and should reflect the

essential concepts of the domain with great accuracy. The

Ubiquitous Language should be fully exercised throughout the

modeling process in order to facilitate communication between

the software specialists and the domain experts, and to discover

key domain concepts which should be used in the model. The

purpose of this modeling process is to create a good model. The

next step is to implement the model in code. This is an equally

important phase of the software development process. Having

created a great model, but failing to properly transfer it into code

will end up in software of questionable quality.

It happens that software analysts work with business domain

experts for months, discover the fundamental elements of the

domain, emphasize the relationshipbs between them, and create

a correct model, which accurately captures the domain. Then the

model is passed on to the software developers. The developers

might look at the model and discover that some of the concepts

or relationships found in it cannot be properly expressed in code.

So they use the model as the original source of inspiration, but

they create their own design which borrows some of the ideas

from the model, and adds some of their own. The development

process continues further, and more classes are added to the

code, expanding the divide between the original model and the

T

Free Online Version.

Support this work, buy the print copy:
http://www.infoq.com/minibooks/domain-driven-

design-quickly

24│DOMAIN DRIVEN DESIGN QUICKLY

final implementation. The good end result is not assured. Good

developers might pull together a product which works, but will it

stand the trials of time? Will it be easily extendable? Will it be

easily maintainable?

Any domain can be expressed with many models, and any model

can be expressed in various ways in code. For each particular

problem there can be more than one solution. Which one do we

choose? Having one analytically correct model does not mean

the model can be directly expressed in code. Or maybe its

implementation will break some software design principles,

which is not advisable. It is important to choose a model which

can be easily and accurately put into code. The basic question

here is: how do we approach the transition from model to code?

One of the recommended design techniques is the so called

analysis model, which is seen as separate from code design and

is usually done by different people. The analysis model is the

result of business domain analysis, resulting in a model which

has no consideration for the software used for implementation.

Such a model is used to understand the domain. A certain level

of knowledge is built, and the model resulting may be

analytically correct. Software is not taken into account at this

stage because it is considered to be a confusing factor. This

model reaches the developers which are supposed to do the

design. Since the model was not built with design principles in

mind, it probably won’t serve that purpose well. The developers

will have to adapt it, or to create a separate design. And there is

no longer a mapping between the model and the code. The result

is that analysis models are soon abandoned after coding starts.

One of the main issues with this approach is that analysts cannot

foresee some of the defects in their model, and all the intricacies

of the domain. The analysts may have gone into too much detail

with some of the components of the model, and have not

detailed enough others. Very important details are discovered

during the design and implementation process. A model that is

truthful to the domain could turn out to have serious problems

with object persistence, or unacceptable performance behavior.

MODEL-DRIVEN DESIGN│25

Developers will be forced to make some decisions on their own,

and will make design changes in order to solve a real problem

which was not considered when the model was created. They

create a design that slips away from the model, making it less

relevant.

If the analysts work independently, they will eventually create a

model. When this model is passed to the designers, some of the

analysts’ knowledge about the domain and the model is lost.

While the model might be expressed in diagrams and writing,

chances are the designers won’t grasp the entire meaning of the

model, or the relationships between some objects, or their

behavior. There are details in a model which are not easily

expressed in a diagram, and may not be fully presented even in

writing. The developers will have a hard time figuring them out.

In some cases they will make some assumptions about the

intended behavior, and it is possible for them to make the wrong

ones, resulting in incorrect functioning of the program.

Analysts have their own closed meetings where many things are

discussed about the domain, and there is a lot of knowledge

sharing. They create a model which is supposed to contain all

that information in a condensed form, and the developers have to

assimilate all of it by reading the documents given to them. It

would be much more productive if the developers could join the

analyst meetings and have thus attain a clear and complete view

of the domain and the model before they start designing the

code.

A better approach is to closely relate domain modeling and

design. The model should be constructed with an eye open to the

software and design considerations. Developers should be

included in the modeling process. The main idea is to choose a

model which can be appropriately expressed in software, so that

the design process is straightforward and based on the model.

Tightly relating the code to an underlying model gives the code

meaning and makes the model relevant.

Getting the developers involved provides feedback. It makes

sure that the model can be implemented in software. If

26│DOMAIN DRIVEN DESIGN QUICKLY

something is wrong, it is identified at an early stage, and the

problem can be easily corrected.

Those who write the code should know the model very well, and

should feel responsible for its integrity. They should realize that

a change to the code implies a change to the model; otherwise

they will refactor the code to the point where it no longer

expresses the original model. If the analyst is separated from the

implementation process, he will soon lose his concern about the

limitations introduced by development. The result is a model

which is not practical.

Any technical person contributing to the model must spend some

time touching the code, whatever primary role he or she plays on

the project. Anyone responsible for changing code must learn to

express a model through the code. Every developer must be

involved in some level of discussion about the model and have

contact with domain experts. Those who contribute in different

ways must consciously engage those who touch the code in a

dynamic exchange of model ideas through the Ubiquitous

Language.

If the design, or some central part of it, does not map to the

domain model, that model is of little value, and the correctness

of the software is suspect. At the same time, complex mappings

between models and design functions are difficult to understand

and, in practice, impossible to maintain as the design changes. A

deadly divide opens between analysis and design so that insight

gained in each of those activities does not feed into the other.

Design a portion of the software system to reflect the domain

model in a very literal way, so that mapping is obvious. Revisit

the model and modify it to be implemented more naturally in

software, even as you seek to make it reflect deeper insight into

the domain. Demand a single model that serves both purposes

well, in addition to supporting a fluent Ubiquitous Language.

Draw from the model the terminology used in the design and the

basic assignment of responsibilities. The code becomes an

expression of the model, so a change to the code may be a

MODEL-DRIVEN DESIGN│27

change to the model. Its effect must ripple through the rest of the

project’s activities accordingly.

To tightly tie the implementation to a model usually requires

software development tools and languages that support a

modeling paradigm, such as object-oriented programming.

Object-oriented programming is suitable for model

implementation because they are both based on the same

paradigm. Object-oriented programming provides classes of

objects and associations of classes, object instances, and

messaging between them. OOP languages make it possible to

create direct mappings between model objects with their

relationships, and their programming counterparts.

Procedural languages offer limited support for model-driven

design. Such languages do not offer the constructs necessary to

implement key components of a model. Some say that OOP can

be done with a procedural language like C, and indeed, some of

the functionality can be reproduced that way. Objects can be

simulated as data structures. Such structures do not contain the

behavior of the object, and that has to be added separately as

functions. The meaning of such data exists only in developer’s

mind, because the code itself is not explicit. A program written

in a procedural language is usually perceived as a set of

functions, one calling another, and working together to achieve a

certain result. Such a program cannot easily encapsulate

conceptual connections, making mapping between domain and

code difficult to be realized.

Some specific domains, like mathematics, can be easily modeled

and implemented using procedural programming, because many

mathematical theories are simply addressed using function calls

and data structures because it is mostly about computations.

More complex domains are not just a suite of abstract concepts

involving computations, and cannot be reduced to a set of

algorithms, so procedural languages fall short of the task of

expressing the respective models. For that reason, procedural

programming is not recommended for model-driven design.

28│DOMAIN DRIVEN DESIGN QUICKLY

The Building Blocks Of A Model-Driven Design

The following sections of this chapter will present the most

important patterns to be used in model-driven design. The

purpose of these patterns is to present some of the key elements

of object modeling and software design from the viewpoint of

domain-driven design. The following diagram is a map of the

patterns presented and the relationships between

them.

encapsulate with

MODEL-DRIVEN

DESIGN

express model with

isolate domain with

encapsulate with

ENTITIES

VALUE OBJECTS

LAYERED

ARCHITECTURE

AGGREGATES

REPOSITORIES

act as root of

SMART UI

X

FACTORIES

encapsulate with

express model with

encapsulate with

mutually exclusive

choices

access with

maintain integrity with

access with
SERVICES

express model with

MODEL-DRIVEN DESIGN│29

Layered Architecture

When we create a software application, a large part of the

application is not directly related to the domain, but it is part of

the infrastructure or serves the software itself. It is possible and

ok for the domain part of an application to be quite small

compared to the rest, since a typical application contains a lot of

code related to database access, file or network access, user

interfaces, etc.

In an object-oriented program, UI, database, and other support

code often gets written directly into the business objects.

Additional business logic is embedded in the behavior of UI

widgets and database scripts. This some times happens because

it is the easiest way to make things work quickly.

However, when domain-related code is mixed with the other

layers, it becomes extremely difficult to see and think about.

Superficial changes to the UI can actually change business logic.

To change a business rule may require meticulous tracing of UI

code, database code, or other program elements. Implementing

coherent, model-driven objects becomes impractical. Automated

testing is awkward. With all the technologies and logic involved

User
Interface

Application Domain Infrastructure

30│DOMAIN DRIVEN DESIGN QUICKLY

in each activity, a program must be kept very simple or it

becomes impossible to understand.

Therefore, partition a complex program into LAYERS. Develop

a design within each LAYER that is cohesive and that depends

only on the layers below. Follow standard architectural patterns

to provide loose coupling to the layers above. Concentrate all the

code related to the domain model in one layer and isolate it from

the user interface, application, and infrastructure code. The

domain objects, free of the responsibility of displaying

themselves, storing themselves, managing application tasks, and

so forth, can be focused on expressing the domain model. This

allows a model to evolve to be rich enough and clear enough to

capture essential business knowledge and put it to work.

A common architectural solution for domain-driven designs

contain four conceptual layers:

User Interface
(Presentation
Layer)

Responsible for presenting information to the user and
interpreting user commands.

Application
Layer

This is a thin layer which coordinates the application
activity. It does not contain business logic. It does not
hold the state of the business objects, but it can hold
the state of an application task progress.

Domain Layer This layer contains information about the domain. This
is the heart of the business software. The state of
business objects is held here. Persistence of the
business objects and possibly their state is delegated to
the infrastructure layer.

Infrastructure
Layer

This layer acts as a supporting library for all the other
layers. It provides communication between layers,
implements persistence for business objects, contains
supporting libraries for the user interface layer, etc.

It is important to divide an application in separate layers, and

establish rules of interactions between the layers. If the code is

not clearly separated into layers, it will soon become so

entangled that it becomes very difficult to manage changes. One

simple change in one section of the code may have unexpected

and undesirable results in other sections. The domain layer

MODEL-DRIVEN DESIGN│31

should be focused on core domain issues. It should not be

involved in infrastructure activities. The UI should neither be

tightly connected to the business logic, nor to the tasks which

normally belong to the infrastructure layer. An application layer

is necessary in many cases. There has to be a manager over the

business logic which supervises and coordinates the overall

activity of the application.

For example, a typical interaction of the application, domain and

infrastructure could look like this. The user wants to book a

flights route, and asks an application service in the application

layer to do so. The application tier fetches the relevant domain

objects from the infrastructure and invokes relevant methods on

them, e.g., to check security margins to other already booked

flights. Once the domain objects have made all checks and

updated their status to “decided”, the application service persists

the objects to the infrastructure.

Entities

There is a category of objects which seem to have an identity,

which remains the same throughout the states of the software.

For these objects it is not the attributes which matter, but a

thread of continuity and identity, which spans the life of a

system and can extend beyond it. Such objects are called Entities

OOP languages keep object instances in memory, and they

associate a reference or a memory address for each object. This

reference is unique for each object at a given moment of time,

but there is no guarantee that it will stay so for an indefinite

period of time. Actually the contrary is true. Objects are

constantly moved out and back into memory, they are serialized

and sent over the network and recreated at the other end, or they

are destroyed. This reference, which stands as an identity for the

running environment of the program, is not the identity we are

talking about. If there is a class which holds weather

32│DOMAIN DRIVEN DESIGN QUICKLY

information, like temperature, it is quite possible to have two

distinct instances of the respective class, both containing the

same value. The objects are perfectly equal and interchangeable

with one another, but they have different references. They are

not entities.

If we were to implement the concept of a Person using a

software program, we would probably create a Person class with

a series of attributes: name, date of birth, place of birth, etc. Are

any of those attributes the identity of the person? Name cannot

be the identity because there can be more people with the same

name. We could not distinguish between to persons with the

same name, if we were to take into account only their name. We

can’t use date of birth either, because there are many people born

on the same day. The same applies to the place of birth. An

object must be distinguished from other objects even though

they might have the same attributes. Mistaken identity can lead

to data corruption.

Consider a bank accounting sytem. Each account has its own

number. An account can be precisely identified by its number.

This number remains unchanged throughout the life of the

system, and assures continuity. The account number can exist as

an object in the memory, or it can be destroyed in memory and

sent to the database. It can also be archived when the account is

closed, but it still exists somewhere as long as there is some

interest in keeping it around. It does not matter what

representation it takes, the number remains the same.

Therefore, implementing entities in software means creating

identity. For a person it can be a combination of attributes:

name, date of birth, place of birth, name of parents, current

address. The Social Security number is also used in US to create

identity. For a bank account the account number seems to be

enough for its identity. Usually the identity is either an attribute

of the object, a combination of attributes, an attribute specially

created to preserve and express identity, or even a behavior. It is

important for two objects with different identities to be to be

easily distinguished by the system, and two objects with the

MODEL-DRIVEN DESIGN│33

same identity to be considered the same by the system. If that

condition is not met, then the entire system can become

corrupted.

There are different ways to create a unique identity for each

object. The ID could be automatically generated by a module,

and used internally in the software without making it visible to

the user. It can be a primary key in a database table, which is

assured to be unique in the database. Whenever the object is

retrieved from the database, its ID is retrieved and recreated in

memory. The ID could be created by the user as it happens with

the codes associated to airports. Each airport has a unique string

ID which is internationally recognized and used by the travel

agencies all over the world to identify airports in their travel

schedules. Another solution is to use the attributes of the object

to create the ID, and when that is not enough, another attribute

can be added to help identify the respective object.

When an object is distinguished by its identity, rather than its

attributes, make this primary to its definition in the model. Keep

the class definition simple and focused on life cycle continuity

and identity. Define a means of distinguishing each object

regardless of its form or history. Be alert to requirements that

call for matching objects by attributes. Define an operation that

is guaranteed to produce a unique result for each object, possibly

by attaching a symbol that is guaranteed unique. This means of

identification may come from the outside, or it may be an

arbitrary identifier created by and for the system, but it must

correspond to the identity distinctions in the model. The model

must define what it means to be the same thing.

Entities are important objects of a domain model, and they

should be considered from the beginning of the modeling

process. It is also important to determine if an object needs to be

an entity or not, which is discussed in the next pattern.

34│DOMAIN DRIVEN DESIGN QUICKLY

Value Objects

We have discussed entities and the importance of recognizing

entities early during the modeling phase. Entities are necessary

objects in a domain model. Should we make all objects entities?

Should every object have an identity?

We may be tempted to make all objects entities. Entities can be

tracked. But tracking and creating identity comes with a cost.

We need to make sure that each instance has its unique identity,

and tracking identity is not very simple. It takes a lot of careful

thinking to decide what makes an identity, because a wrong

decision would lead to objects with the same identity, something

that is not desired. There are also performance implications in

making all objects entities. There has to be one instance for each

object. If Customer is an entity object, then one instance of this

object, representing a specific bank client, cannot be reused for

account operations corresponding to other clients. The outcome

is that such an instance has to be created for every client. This

can result in system performance degradation when dealing with

thousands of instances.

Let’s consider a drawing application. The user is presented a

canvas and he can draw any points and lines of any thickness,

style and color. It is useful to create a class of object named

Point, and the program could create an instance of this class for

each point on the canvas. Such a point would contain two

attributes associated to screen or canvas coordinates. Is it

necessary to consider each point as having an identity? Does it

have continuity? It seems that the only thing that matters for

such an object is its coordinates.

There are cases when we need to contain some attributes of a

domain element. We are not interested in which object it is, but

what attributes it has. An object that is used to describe certain

aspects of a domain, and which does not have identity, is named

Value Object.

MODEL-DRIVEN DESIGN│35

It is necessary to distinguish between Entity Objects and Value

Objects. It is not helpful to make all object entities for the sake

of uniformity. Actually, it is recommended to select as entities

only those objects which conform to the entity definition. And

make the rest of the objects Value Objects. (We will present

another type of object in the next section, but we’ll assume that

we have only entity objects and value objects for now.) This will

simplify the design, and there will be some other positive

consequences.

Having no identity, Value Objects can be easily created and

discarded. Nobody cares about creating an identity, and the

garbage collector takes care of the object when is no longer

referenced by any other object. This simplifies the design a lot.

It is highly recommended that value objects be immutable. They

are created with a constructor, and never modified during their

life time. When you want a different value for the object, you

simply create another one. This has important consequences for

the design. Being immutable, and having no identity, Value

Objects can be shared. That can be imperative for some designs.

Immutable objects are sharable with important performance

implications. They also manifest integrity, i.e. data integrity.

Imagine what it would mean to share an object which is not

immutable. An air travel booking system could create objects for

each flight. One of the attributes could be the flight code. One

client books a flight for a certain destination. Another client

wants to book the same flight. The system chooses to reuse the

object which holds the flight code, because it is about the same

flight. In the meantime, the client changes his mind, and chooses

to take a different flight. The system changes the flight code

because this is not immutable. The result is that the flight code

of the first client changes too.

One golden rule is: if Value Objects are shareable, they should

be immutable. Value Objects should be kept thin and simple.

When a Value Object is needed by another party, it can be

simply passed by value, or a copy of it can be created and given.

Making a copy of a Value Object is simple, and usually without

36│DOMAIN DRIVEN DESIGN QUICKLY

any consequences. If there is no identity, you can make as many

copies as you wish, and destroy all of them when necessary.

Value Objects can contain other Value Objects, and they can

even contain references to Entities. Although Value Objects are

used to simply contain attributes of a domain object, that does

not mean that it should contain a long list with all the attributes.

Attributes can be grouped in different objects. Attributes chosen

to make up a Value Object should form a conceptual whole. A

customer is associated with a name, a street, a city, and a state. It

is better to contain the address information in a separate object,

and the customer object will contain a reference to such an

object. Street, city, state should have an object of their own, the

Address, because they belong conceptually together, rather than

being separate attributes of customer, as shown in the diagram

below.

Customer

customerID
name
street
city
state

Customer

customerID
name
address

Address

street
city
state

MODEL-DRIVEN DESIGN│37

Services

When we analyze the domain and try to define the main objects

that make up the model, we discover that some aspects of the

domain are not easily mapped to objects. Objects are generally

considered as having attributes, an internal state which is

managed by the object, and exhibit a behavior. When we

develop the ubiquitous language, the key concepts of the domain

are introduced in the language, and the nouns of the language are

easily mapped to objects. The verbs of the language, associated

with their corresponding nouns become the part of the behavior

of those objects. But there are some actions in the domain, some

verbs, which do not seem to belong to any object. They represent

an important behavior of the domain, so they cannot be

neglected or simply incorporated into some of the Entities or

Value Objects. Adding such behavior to an object would spoil

the object, making it stand for functionality which does not

belong to it. Nonetheless, using an object-oriented language, we

have to use an object for this purpose. We can’t just have a

separate function on its own. It has to be attached to some

object. Often this kind of behavior functions across several

objects, perhaps of different classes. For example, to transfer

money from one account to another; should that function be in

the sending account or the receiving account? It feels just as

misplaced in either.

When such a behavior is recognized in the domain, the best

practice is to declare it as a Service. Such an object does not

have an internal state, and its purpose is to simply provide

functionality for the domain. The assistance provided by a

Service can be a significant one, and a Service can group related

functionality which serves the Entities and the Value Objects. It

is much better to declare the Service explicitly, because it creates

a clear distinction in the domain, it encapsulates a concept. It

creates confusion to incorporate such functionality in an Entity

or Value Object because it won’t be clear what those objects

stand for.

38│DOMAIN DRIVEN DESIGN QUICKLY

Services act as interfaces which provide operations. Services are

common in technical frameworks, but they can be used in the

domain layer too. A service is not about the object performing

the service, but is related to the objects the operations are

performed on/for. In this manner, a Service usually becomes a

point of connection for many objects. This is one of the reasons

why behavior which naturally belongs to a Service should not be

included into domain objects. If such functionality is included in

domain objects, a dense network of associations is created

between them and the objects which are the beneficiary of the

operations. A high degree of coupling between many objects is a

sign of poor design because it makes the code difficult to read

and understand, and more importantly, it makes it difficult to

change.

A Service should not replace the operation which normally

belongs on domain objects. We should not create a Service for

every operation needed. But when such an operation stands out

as an important concept in the domain, a Service should be

created for it. There are three characteristics of a Service:

1. The operation performed by the Service refers to a domain

concept which does not naturally belong to an Entity or Value

Object.

2. The operation performed refers to other objects in the domain.

3. The operation is stateless.

When a significant process or transformation in the domain is

not a natural responsibility of an Entity or Value Object, add an

operation to the model as a standalone interface declared as a

Service. Define the interface in terms of the language of the

model and make sure the operation name is part of the

Ubiquitous Language. Make the Service stateless.

While using Services, is important to keep the domain layer

isolated. It is easy to get confused between services which

belong to the domain layer, and those belonging to the

infrastructure. There can also be services in the application layer

MODEL-DRIVEN DESIGN│39

which adds a supplementary level of complexity. Those services

are even more difficult to separate from their counterparts

residing in the domain layer. While working on the model and

during the design phase, we need to make sure that the domain

level remains isolated from the other levels.

Both application and domain Services are usually built on top of

domain Entities and Values providing required functionality

directly related to those objects. Deciding the layer a Service

belongs to is difficult. If the operation performed conceptually

belongs to the application layer, then the Service should be

placed there. If the operation is about domain objects, and is

strictly related to the domain, serving a domain need, then it

should belong to the domain layer.

Let’s consider a practical example, a web reporting application.

The reports make use of data stored in a database, and they are

generated based on templates. The final result is an HTML page

which is shown to the user in a web browser.

The UI layer is incorporated in web pages and allows the user to

login, to select the desired report and click a button to request it.

The application layer is a thin layer which stands between the

user interface, the domain and the infrastructure. It interacts with

the database infrastructure during login operations, and interacts

with the domain layer when it needs to create reports. The

domain layer will contain the core of the domain, objects

directly related to the reports. Two of those objects are Report

and Template, which the reports are based on. The infrastructure

layer will support database access and file access.

When a user selects a report to be created, he actually selects the

name of the report from a list of names. This is the reportID, a

string. Some other parameters are passed, like the items shown

in the report and the time interval of the data included in the

report. But we will mention only the reportID for simplicity.

This name is passed through the application layer to the domain

layer. The domain layer is responsible for creating and returning

the report being given its name. Since reports are based on

templates, a Service could be created, and its purpose would be

40│DOMAIN DRIVEN DESIGN QUICKLY

to obtain the template which corresponds to a reportID. This

template is stored in a file or in the database. It is not appropriate

to put such an operation in the Report object itself. It does not

belong to the Template object either. So we create a separate

Service whose purpose is to retrieve a report template based on

report’s ID. This would be a service located in the domain layer.

It would make use of the file infrastructure to retrieve the

template from the disk.

Modules

For a large and complex application, the model tends to grow

bigger and bigger. The model reaches a point where it is hard to

talk about as a whole, and understanding the relationships and

interactions between different parts becomes difficult. For that

reason, it is necessary to organize the model into modules.

Modules are used as a method of organizing related concepts

and tasks in order to reduce complexity.

Modules are widely used in most projects. It is easier to get the

picture of a large model if you look at the modules it contains,

then at the relationships between those modules. After the

interaction between modules is understood, one can start

figuring out the details inside of a module. It’s a simple and

efficient way to manage complexity.

Another reason for using modules is related to code quality. It is

widely accepted that software code should have a high level of

cohesion and a low level of coupling. While cohesion starts at

the class and method level, it can be applied at module level. It is

recommended to group highly related classes into modules to

provide maximum cohesion possible. There are several types of

cohesion. Two of the most used are communicational cohesion

and functional cohesion. Communicational cohesion is achieved

when parts of the module operate on the same data. It makes

sense to group them, because there is a strong relationship

MODEL-DRIVEN DESIGN│41

between them. The functional cohesion is achieved when all

parts of the module work together to perform a well-defined

task. This is considered the best type of cohesion.

Using modules in design is a way to increase cohesion and

decrease coupling. Modules should be made up of elements

which functionally or logically belong together assuring

cohesion. Modules should have well defined interfaces which

are accessed by other modules. Instead of calling three objects of

a module, it is better to access one interface, because it reduces

coupling. Low coupling reduces complexity, and increases

maintainability. It is easier to understand how a system functions

when there are few connections between modules which perform

well defined tasks, than when every module has lots of

connections to all the other modules.

Choose Modules that tell the story of the system and contain a

cohesive set of concepts. This often yields low coupling between

modules, but if it doesn’t look for a way to change the model to

disentangle the concepts, or an overlooked concept that might be

the basis of a Module that would bring the elements together in a

meaningful way. Seek low coupling in the sense of concepts that

can be understood and reasoned about independently of each

other. Refine the model until it partitions according to high-level

domain concepts and the corresponding code is decoupled as

well.

Give the Modules names that become part of the Ubiquitous

Language. Modules and their names should reflect insight into

the domain.

Designers are accustomed to creating modules from the outset.

They are common parts of our designs. After the role of the

module is decided, it usually stays unchanged, while the

internals of the module may change a lot. It is recommended to

have some flexibility, and allow the modules to evolve with the

project, and should not be kept frozen. It is true that module

refactoring may be more expensive than a class refactoring, but

when a module design mistake is found, it is better to address it

by changing the module then by finding ways around it.

42│DOMAIN DRIVEN DESIGN QUICKLY

Aggregates

The last three patterns in this chapter will deal with a different

modeling challenge, one related to the life cycle of domain

objects. Domain objects go through a set of states during their

life time. They are created, placed in memory and used in

computations, and they are destroyed. In some cases they are

saved in permanent locations, like a database, where they can be

retrieved from some time later, or they can be archived. At some

point they can be completely erased from the system, including

database and the archive storage.

Managing the life cycle of a domain object constitutes a

challenge in itself, and if it is not done properly, it may have a

negative impact on the domain model. We will present three

patterns which help us deal with it. Aggregate is a domain

pattern used to define object ownership and boundaries.

Factories and Repositories are two design patterns which help us

deal with object creation and storage. We will start by talking

about Aggregates.

A model can contain a large number of domain objects. No

matter how much consideration we put in the design, it happens

that many objects are associated with one another, creating a

complex net of relationships. There are several types of

associations. For every traversable association in the model,

there has to be corresponding software mechanism which

enforces it. Real associations between domain object end up in

the code, and many times even in the database. A one-to-one

relationship between a customer and the bank account opened on

his name is expressed as a reference between two objects, and

implies a relationship between two database tables, the one

which keeps the customers and the one which keeps the

accounts.

The challenges of models are most often not to make them

complete enough, but rather to make them as simple and

MODEL-DRIVEN DESIGN│43

understandable as possible. Most of the time it pays of to

eliminate or simplify relations from the model. That is, unless

they embed deep understanding of the domain.

A one-to-many association is more complex because it involves

many objects which become related. This relationship can be

simplified by transforming it into an association between one

object and a collection of other objects, although it is not always

possible.

There are many-to-many associations and a large number of

them are bidirectional. This increases complexity a lot, making

the life cycle management of such objects quite difficult. The

number of associations should be reduced as much as possible.

Firstly, associations which are not essential for the model should

be removed. They may exist in the domain, but they are not

necessary in our model, so take them out. Secondly, multiplicity

can be reduced by adding a constraint. If many objects satisfy a

relationship, it is possible that only one will do it if the right

constraint is imposed on the relationship. Thirdly, many times

bidirectional associations can be transformed in unidirectional

ones. Each car has an engine, and every engine has a car where it

runs. The relationship is bidirectional, but it can be easily

simplified considering that the car has an engine, and not the

other way around.

After we reduce and simplify associations between objects, we

may still end up with many relationships. A banking system

holds and processes customer data. This data includes customer

personal data, like name, address, phone numbers, job

description, and account data: account number, balance,

operations performed, etc. When the system archives or

completely deletes information about a customer, it has to make

sure that all the references are removed. If many objects hold

such references, it is difficult to ensure that they are all removed.

Also, when some data changes for a customer, the system has to

make sure that it is properly updated throughout the system, and

data integrity is guaranteed. This is usually left to be addressed

at database level. Transactions are used to enforce data integrity.

44│DOMAIN DRIVEN DESIGN QUICKLY

But if the model was not carefully designed, there will be a high

degree of database contention, resulting in poor performance.

While database transactions play a vital role in such operations,

it is desirable to solve some of the problems related to data

integrity directly in the model.

It is also necessary to be able to enforce the invariants. The

invariants are those rules which have to be maintained whenever

data changes. This is difficult to realize when many objects hold

references to changing data objects.

It is difficult to guarantee the consistency of changes to objects

in a model with complex associations. Many times invariants

apply to closely related objects, not just discrete ones. Yet

cautious locking schemes cause multiple users to interfere

pointlessly with each other and make a system unusable.

Therefore, use Aggregates. An Aggregate is a group of

associated objects which are considered as one unit with regard

to data changes. The Aggregate is demarcated by a boundary

which separates the objects inside from those outside. Each

Aggregate has one root. The root is an Entity, and it is the only

object accessible from outside. The root can hold references to

any of the aggregate objects, and the other objects can hold

references to each other, but an outside object can hold

references only to the root object. If there are other Entities

inside the boundary, the identity of those entities is local,

making sense only inside the aggregate.

How is the Aggregate ensuring data integrity and enforcing the

invariants? Since other objects can hold references only to the

root, it means that they cannot directly change the other objects

in the aggregate. All they can do is to change the root, or ask the

root to perform some actions. And the root will be able to

change the other objects, but that is an operation contained

inside the aggregate, and it is controllable. If the root is deleted

and removed from memory, all the other objects from the

aggregate will be deleted too, because there is no other object

holding reference to any of them. When any change is done to

the root which indirectly affects the other objects in the

MODEL-DRIVEN DESIGN│45

aggregate, it is simple to enforce the invariants because the root

will do that. It is much harder to do so when external objects

have direct access to internal ones and change them. Enforcing

the invariants in such a circumstance involves putting some logic

in external objects to deal with it, which is not desirable.

It is possible for the root to pass transient references of internal

objects to external ones, with the condition that the external

objects do not hold the reference after the operation is finished.

One simple way to do that is to pass copies of the Value Objects

to external objects. It does not really matter what happens to

those objects, because it won’t affect the integrity of the

aggregate in any way.

If objects of an Aggregate are stored in a database, only the root

should be obtainable through queries. The other objects should

be obtained through traversal associations.

Objects inside an Aggregate should be allowed to hold

references to roots of other Aggregates.

The root Entity has global identity, and is responsible for

maintaining the invariants. Internal Entities have local identity.

Cluster the Entities and Value Objects into Aggregates and

define boundaries around each. Choose one Entity to be the root

of each Aggregate, and control all access to the objects inside

the boundary through the root. Allow external objects to hold

references to the root only. Transient references to internal

members can be passed out for use within a single operation

only. Because the root controls access, it cannot be blindsided by

changes to the internals. This arrangement makes it practical to

enforce all invariants for objects in the Aggregate and for the

Aggregate as a whole in any state change.

A simple example of an Aggregation is shown in the following

diagram. The customer is the root of the Aggregate, and all the

other objects are internal. If the Address is needed, a copy of it

can be passed to external objects.

46│DOMAIN DRIVEN DESIGN QUICKLY

Factories

Entities and Aggregates can often be large and complex – too

complex to create in the constructor of the root entity. Infact

trying to construct a complex aggregate in its constructure is in

contradiction with what often happens in the domain itself,

where things are created by other things (like electronics get

created in on assembly lines). It is like having the printer build

itself.

When a client object wants to create another object, it calls its

constructor and possibly passes some parameters. But when the

object construction is a laborious process, creating the object

involves a lot of knowledge about the internal structure of the

object, about the relationships between the objects contained,

and the rules applied to them. This means that each client of the

object will hold specific knowledge about the object built. This

breaks encapsulation of the domain objects and of the

Aggregates. If the client belongs to the application layer, a part

of the domain layer has been moved outside, messing up the

entire design. In real life, it is like we are given plastic, rubber,

metal, silicon, and we are building our own printer. It’s not

impossible, but is it really worth doing it?

Customer

customerID
name

Address

street
city
state

ContactInfo

homePhoneNumber
workPhoneNumber
faxNumber
emailAddress

MODEL-DRIVEN DESIGN│47

Creation of an object can be a major operation in itself, but

complex assembly operations do not fit the responsibility of the

created objects. Combining such responsibilities can produce

ungainly designs that are hard to understand.

Therefore, a new concept is necessary to be introduced, one that

help to encapsulate the process of complex object creation. This

is called Factory. Factories are used to encapsulate the

knowledge necessary for object creation, and they are especially

useful to create Aggregates. When the root of the Aggregate is

created, all the objects contained by the Aggregate are created

along with it, and all the invariants are enforced.

It is important for the creation process to be atomic. If it is not,

there is a chance for the creation process to be half done for

some objects, leaving them in an undefined state. This is even

more true for Aggregates. When the root is created, it is

necessary that all objects subject to invariants are created too.

Otherwise the invariants cannot be enforced. For immutable

Value Objects it means that all attributes are initialized to their

valid state. If an object cannot be created properly, an exception

should be raised, making sure that an invalid value is not

returned.

Therefore, shift the responsibility for creating instances of

complex objects and Aggregates to a separate object, which may

itself have no responsibility in the domain model but is still part

of the domain design. Provide an interface that encapsulates all

complex assembly and that does not require the client to

reference the concrete classes of the objects being instantiated.

Create entire Aggregates as a unit, enforcing their invariants.

There are several design patterns used to implement Factories.

The book Design Patterns by Gamma et all. describes them in

detail, and presents these two patterns among others: Factory

Method, Abstract Factory. We won’t try to present the patterns

from a design perspective, but from a domain modeling one.

A Factory Method is an object method which contains and hides

knowledge necessary to create another object. This is very useful

48│DOMAIN DRIVEN DESIGN QUICKLY

when a client wants to create an object which belongs to an

Aggregate. The solution is to add a method to the Aggregate

root, which takes care of the object creation, enforces all

invariants, and returns a reference to that object, or to a copy of

it.

The container contains components and they are of a certain

type. It is necessary that when such a component is created to

automatically belong to a container. The client calls the

createComponent(Type t) method of the container. The

container instantiates a new component. The concrete class of

the component is determined based on its type. After its creation,

the component is added to the collection of components

contained by the container, and a copy of it is returned to the

client.

There are times when the construction of an object is more

complex, or when the creation of an object involves the creation

of a series of objects. For example: the creation of an Aggregate.

Hiding the internal construction needs of an Aggregate can be

done in a separate Factory object which is dedicated to this task.

Let’s consider the example of a program module which

computes the route that can be followed by a car from departure

to destination being given a series of constraints. The user logs

in the web site running the application and specifies one of the

Container

containerID=ID01
components={c1,
c2, c3, c4}

createComponent(Type)

c5

AbstractComponent

type=t

new

ConcreteComponent

attributes

MODEL-DRIVEN DESIGN│49

following constraints: the shortest route, the fastest route, the

cheapest route. The routes created can be annotated with user

information which needs to be saved, so they can be later

retrieved when the customer logs in again.

The Route ID generator is used to create a unique identity for

each route which is necessary for an Entity.

When creating a Factory, we are forced to violate an object’s

encapsulation, which must be done carefully. Whenever

something changes in the object that has an impact on

construction rules or on some of the invariants, we need to make

sure the Factory is updated to support the new condition.

Factories are tightly related to the objects they are created. That

can be a weakness, but it can also be a strength. An Aggregate

contains a series of objects that are closely related. The

construction of the root is related to the creation of the other

objects in the Aggregate. There has to be some logic which puts

together an Aggregate. The logic does not naturally belong to

any of the objects, because it is about the construction of other

objects. It seems appropriate to use a special Factory class which

is given the task of creating the entire Aggregate, and which will

contain the rules, the constraints and the invariants which have

to be enforced for the Aggregate to be valid. The objects will

RouteFactory

Route ID
generator

getNextID() R2345

Route

constraint
cities[]

City

name
location

new

createRoute(constraint)

R2345

50│DOMAIN DRIVEN DESIGN QUICKLY

remain simple and will serve their specific purpose without the

clutter of complex construction logic.

Entity Factories and Value Object Factories are different. Values

are usually immutable objects, and all the necessary attributes

need to be produced at the time of creation. When the object is

created, it has to be valid and final. It won’t change. Entities are

not immutable. They can be changed later, by setting some of

the attributes with the mention that all invariants need to be

respected. Another difference comes from the fact that Entities

need identity, while Value Objects do not.

There are times when a Factory is not needed, and a simple

constructor is enough. Use a constructor when:

• The construction is not complicated.

• The creation of an object does not involve the

creation of others, and all the attributes needed are

passed via the constructor.

• The client is interested in the implementation,

perhaps wants to choose the Strategy used.

• The class is the type. There is no hierarchy involved,

so no need to choose between a list of concrete

implementations.

Another observation is that Factories need to create new objects

from scratch, or they are required to reconstitute objects which

previously existed, but have been probably persisted to a

database. Bringing Entities back into memory from their resting

place in a database involves a completely different process than

creating a new one. One obvious difference is that the new

object does not need a new identity. The object already has one.

Violations of the invariants are treated differently. When a new

object is created from scratch, any violation of invariants ends

up in an exception. We can’t do that with objects recreated from

a database. The objects need to be repaired somehow, so they

can be functional, otherwise there is data loss.

MODEL-DRIVEN DESIGN│51

Repositories

In a model-driven design, objects have a life cycle starting with

creation and ending with deletion or archiving. A constructor or

a Factory takes care of object creation. The entire purpose of

creating objects is to use them. In an object-oriented language,

one must hold a reference to an object in order to be able to use

it. To have such a reference, the client must either create the

object or obtain it from another, by traversing an existing

association. For example, to obtain a Value Object of an

Aggregate, the client must request it from the root of the

Aggregate. The problem is now that the client must have a

reference to the root. For large applications, this becomes a

problem because one must make sure the client always has a

reference to the object needed, or to another which has a

reference to the respective object. Using such a rule in the design

will force the objects to hold on a series of references they

probably wouldn’t keep otherwise. This increases coupling,

creating a series of associations which are not really needed.

To use an object means the object has already been created. If

the object is the root of an Aggregate, then it is an Entity, and

chances are it will be stored in a persistent state in a database or

another form of persistence. If it is a Value Object, it may be

obtainable from an Entity by traversing an association. It turns

out that a great deal of objects can be obtained directly from the

database. This solves the problem of getting reference of objects.

When a client wants to use an object, it accesses the database,

retrieves the object from it and uses it. This seems like a quick

and simple solution, but it has negative impacts on the design.

Databases are part of the infrastructure. A poor solution is for

the client to be aware of the details needed to access a database.

For example, the client has to create SQL queries to retrieve the

desired data. The database query may return a set of records,

exposing even more of its internal details. When many clients

have to create objects directly from the database, it turns out that

52│DOMAIN DRIVEN DESIGN QUICKLY

such code is scattered throughout the entire domain. At that

point the domain model becomes compromised. It has to deal

with lots of infrastructure details instead of dealing with domain

concepts. What happens if a decision is made to change the

underlying database? All that scattered code needs to be changed

to be able to access the new storage. When client code accesses a

database directly, it is possible that it will restore an object

internal to an Aggregate. This breaks the encapsulation of the

Aggregate with unknown consequences.

A client needs a practical means of acquiring references to

preexisting domain objects. If the infrastructure makes it easy to

do so, the developers of the client may add more traversable

associations, muddling the model. On the other hand, they may

use queries to pull the exact data they need from the database, or

to pull a few specific objects rather than navigating from

Aggregate roots. Domain logic moves into queries and client

code, and the Entities and Value Objects become mere data

containers. The sheer technical complexity of applying most

database access infrastructure quickly swamps client code,

which leads developers to dumb-down the domain layer, which

makes the model irrelevant. The overall effect is that the domain

focus is lost and the design is compromised.

Therefore, use a Repository, the purpose of which is to

encapsulate all the logic needed to obtain object references. The

domain objects won’t have to deal with the infrastructure to get

the needed references to other objects of the domain. They will

just get them from the Repository and the model is regaining its

clarity and focus.

The Repository may store references to some of the objects.

When an object is created, it may be saved in the Repository,

and retrieved from there to be used later. If the client requested

an object from the Repository, and the Repository does not have

it, it may get it from the storage. Either way, the Repository acts

as a storage place for globally accessible objects.

The Repository may also include a Strategy. It may access one

persistence storage or another based on the specified Strategy. It

MODEL-DRIVEN DESIGN│53

may use different storage locations for different type of objects.

The overall effect is that the domain model is decoupled from

the need of storing objects or their references, and accessing the

underlying persistence infrastructure.

For each type of object that needs global access, create an object

that can provide the illusion of an in-memory collection of all

objects of that type. Set up access through a well-known global

interface. Provide methods to add and remove objects, which

will encapsulate the actual insertion or removal of data in the

data store. Provide methods that select objects based on some

criteria and return fully instantiated objects or collections of

objects whose attribute values meet the criteria, thereby

encapsulating the actual storage and query technology. Provide

repositories only for Aggregate roots that actually need direct

access. Keep the client focused on the model, delegating all

object storage and access to the Repositories.

A Repository may contain detailed information used to access

the infrastructure, but its interface should be simple. A

Repository should have a set of methods used to retrieve objects.

The client calls such a method and passes one or more

Repository

Client

Database

Other
Repositories

Factory
etc.

request
object
specifying a
selection

Get the requested
object(s) from
storage, other
repositories or a
factory

54│DOMAIN DRIVEN DESIGN QUICKLY

parameters which represent the selection criteria used to select

an object or a set of matching objects. An Entity can be easily

specified by passing its identity. Other selection criteria can be

made up of a set of object attributes. The Repository will

compare all the objects against that set and will return those that

satisfy the criteria. The Repository interface may contain

methods used to perform some supplementary calculations like

the number of objects of a certain type.

It can be noted that the implementation of a repository can be

closely liked to the infrastructure, but that the repository

interface will be pure domain model.

C0123

CustomerRepository

findCustomer(string id)
addCustomer(Customer)

Customer C0123

customerID = “C0123”
name = “Name”
address = Address

Client

find or reconstitute

findCustomer(“C0123”)

MODEL-DRIVEN DESIGN│55

Another option is to specify a selection criteria as a

Specification. The Specification allows defining a more complex

criteria, such as in the following:

There is a relationship between Factory and Repository. They

are both patterns of the model-driven design, and they both help

us to manage the life cycle of domain objects. While the Factory

is concerned with the creation of objects, the Repository takes

care of already existing objects. The Repository may cache

objects locally, but most often it needs to retrieve them from a

persistent storage. Objects are either created using a constructor

or they are passed to a Factory to be constructed. For this reason,

the Repository may be seen as a Factory, because it creates

return collection of
customers CustomerRepository

findCustomers(Criteria c)
addCustomer(Customer)

Customer C7265

customerID = “C7265”
name = “John”
address = Address

Client

find or reconstitute

findCustomers(criteria)

Customer C8433

customerID = “C8433”
name = “Joe”
address = Address

Customer C9771

customerID = “C9771”
name = “Jane”
address = Address

The criteria is:
select all
customers whose
name starts with
‘J’

56│DOMAIN DRIVEN DESIGN QUICKLY

objects. It is not a creation from scratch, but a reconstitution of

an object which existed. We should not mix a Repository with a

Factory. The Factory should create new objects, while the

Repository should find already created objects. When a new

object is to be added to the Repository, it should be created first

using the Factory, and then it should be given to the Repository

which will store it like in the example below.

DatabaseRepositoryFactory

createCustomer("C0123")

return Customer C0123

addCustomer(C0123)

insertRow

Client

Another way this is noted is that Factories are “pure domain”,

but that Repositories can contain links to the infrastructure, e g

the database.

4

 57

Refactoring Toward Deeper Insight

Continuous Refactoring

o far we have been talking about the domain, and the importance

of creating a model which expresses the domain. We gave some

guidelines about the techniques to be used to create a useful

model. The model has to be tightly associated with the domain it

comes from. We have also said that the code design has to be

done around the model, and the model itself should be improved

based on design decisions. Designing without a model can lead

to software which is not true to the domain it serves, and may

not have the expected behavior. Modeling without feedback

from the design and without developers being involved leads to

a model which is not well understood by those who have to

implement it, and may not be appropriate for the technologies

used.

During the design and development process, we need to stop

from time to time, and take a look at the code. It may be time for

a refactoring. Refactoring is the process of redesigning the code

to make it better without changing application behavior.

Refactoring is usually done in small, controllable steps, with

great care so we don’t break functionality or introduce some

bugs. After all, the purpose of refactoring is to make the code

better not worse. Automated tests are of great help to ensure that

we haven’t broken anything.

S

Free Online Version.

Support this work, buy the print copy:
http://www.infoq.com/minibooks/domain-driven-

design-quickly

58│DOMAIN DRIVEN DESIGN QUICKLY

There are many ways to do code refactoring. There are even

refactoring patterns. Such patterns represent an automated

approach to refactoring. There are tools built on such patterns

making the developer’s life much easier than it used to be.

Without those tools refactoring can be very difficult. This kind

of refactoring deals more with the code and its quality.

There is another type of refactoring, one related to the domain

and its model. Sometimes there is new insight into the domain,

something becomes clearer, or a relationship between two

elements is discovered. All that should be included in the design

through refactoring. It is very important to have expressive code

that is easy to read and understand. From reading the code, one

should be able to tell what the code does, but also why it does it.

Only then can the code really capture the substance of the

model.

Technical refactoring, the one based on patterns, can be

organized and structured. Refactoring toward deeper insight

cannot be done in the same way. We cannot create patterns for

it. The complexity of a model and the variety of models do not

offer us the possibility to approach modeling in a mechanistic

way. A good model is the result of deep thinking, insight,

experience, and flair.

One of the first things we are taught about modeling is to read

the business specifications and look for nouns and verbs. The

nouns are converted to classes, while the verbs become methods.

This is a simplification, and will lead to a shallow model. All

models are lacking depth in the beginning, but we should

refactor the model toward deeper and deeper insight.

The design has to be flexible. A stiff design resists refactoring.

Code that was not built with flexibility in mind is code hard to

work with. Whenever a change is needed, you’ll see the code

fighting you, and things that should be refactored easily take a

lot of time.

Using a proven set of basic building blocks along with consistent

language brings some sanity to the development effort. This

REFACTORING TOWARD DEEPER INSIGHT│59

leaves the challenge of actually finding an incisive model, one

that captures subtle concerns of the domain experts and can

drive a practical design. A model that sloughs off the superficial

and captures the essential is a deep model. This should make the

software more in tune with the way the domain experts think and

more responsive to the user’s needs.

Traditionally, refactoring is described in terms of code

transformations with technical motivations. Refactoring can also

be motivated by an insight into the domain and a corresponding

refinement of the model or its expression in code.

Sophisticated domain models are seldom developed except

through an iterative process of refactoring, including close

involvement of the domain experts with developers interested in

learning about the domain.

Bring Key Concepts Into Light

Refactoring is done in small steps. The result is also a series of

small improvements. There are times when lots of small changes

add very little value to the design, and there are times when few

changes make a lot of difference. It’s a Breakthrough.

We start with a coarse, shallow model. Then we refine it and the

design based on deeper knowledge about the domain, on a better

understanding of the concerns. We add new concepts and

abstractions to it. The design is then refactored. Each refinement

adds more clarity to the design. This creates in turn the premises

for a Breakthrough.

A Breakthrough often involves a change in thinking, in the way

we see the model. It is also a source of great progress in the

project, but it also has some drawbacks. A Breakthrough may

imply a large amount of refactoring. That means time and

resources, something we seem to never have enough. It is also

60│DOMAIN DRIVEN DESIGN QUICKLY

risky, because ample refactoring may introduce behavioral

changes in the application.

To reach a Breakthrough, we need to make the implicit concepts

explicit. When we talk to the domain experts, we exchange a lot

of ideas and knowledge. Some of the concepts make their way

into the Ubiquitous Language, but some remain unnoticed at the

beginning. They are implicit concepts, used to explain other

concepts which are already in the model. During this process of

design refinement, some of those implicit concepts draw our

attention. We discover that some of them play a key role in the

design. At that point we should make the respective concepts

explicit. We should create classes and relationships for them.

When that happens, we may have the chance of a Breakthrough.

Implicit concepts should not stay that way. If they are domain

concepts, they should be present in the model and the design.

How do we recognize them? The first way to discover implicit

concepts is to listen to the language. The language we are using

during modeling and design contains a lot of information about

the domain. At the beginning it may not be so much, or some of

the information may not be correctly used. Some of the concepts

may not be fully understood, or even completely misunderstood.

This is all part of learning a new domain. But as we build our

Ubiquitous Language, the key concepts make their way into it.

That is where we should start looking for implicit concepts.

Sometimes sections of the design may not be so clear. There is a

set of relationships that makes the path of computation hard to

follow. Or the procedures are doing something complicated

which is hard to understand. This is awkwardness in the design.

This is a good place to look for hidden concepts. Probably

something is missing. If a key concept is missing from the

puzzle, the others will have to replace its functionality. This will

fatten up some objects, adding them behavior which is not

supposed to be there. The clarity of the design will suffer. Try to

see if there is a missing concept. If one is found, make it explicit.

Refactor the design to make it simpler and suppler.

REFACTORING TOWARD DEEPER INSIGHT│61

When building knowledge it is possible to run into

contradictions. What a domain expert says seem to contradict

what another upholds. A requirement may seem to contradict

another. Some of the contradictions are not really contradictions,

but different ways of seeing the same thing, or simply lack of

accuracy in explanations. We should try to reconcile

contradictions. Sometimes this brings to light important

concepts. Even if it does not, it is still important to keep

everything clear.

Another obvious way of digging out model concepts is to use

domain literature. There are books written on almost any

possible topic. They contain lots of knowledge about the

respective domains. The books do not usually contain models for

the domains they present. The information they contain needs to

be processed, distilled and refined. Nonetheless, the information

found in books is valuable, and offers a deep view of the

domain.

There are other concepts which are very useful when made

explicit: Constraint, Process and Specification. A Constraint is a

simple way to express an invariant. Whatever happens to the

object data, the invariant is respected. This is simply done by

putting the invariant logic into a Constraint. The following is a

simple example. Its purpose is to explain the concept, not to

represent the suggested approach for a similar case.

62│DOMAIN DRIVEN DESIGN QUICKLY

We can add books to a bookshelf, but we should never add more

than its capacity. This can be seen as part of the Bookshelf

behavior, like in the next Java code.

public class Bookshelf {

 private int capacity = 20;

 private Collection content;

 public void add(Book book) {

 if(content.size() + 1 <= capacity) {

 content.add(book);

 } else {

 throw new IllegalOperationException(

 “The bookshelf has reached its limit.”);

}

}

}

We can refactor the code, extracting the constraint in a separate

method.

Bookshelf

add(Book)

capacity : int
content : Collection

content.size() <=

capacity

REFACTORING TOWARD DEEPER INSIGHT│63

public class Bookshelf {

 private int capacity = 20;

 private Collection content;

 public void add(Book book) {

 if(isSpaceAvailable()) {

 content.add(book);

 } else {

 throw new IllegalOperationException(

“The bookshelf has reached its
limit.”);

}

}

private boolean isSpaceAvailable() {

 return content.size() < capacity;

}

}

Placing the Constraint into a separate method has the advantage

of making it explicit. It is easy to read and everybody will notice

that the add() method is subject to this constraint. There is also

room for growth adding more logic to the methods if the

constraint becomes more complex.

Processes are usually expressed in code with procedures. We

won’t use a procedural approach, since we are using an object-

oriented language, so we need to choose an object for the

process, and add a behavior to it. The best way to implement

processes is to use a Service. If there are different ways to carry

out the process, then we can encapsulate the algorithm in an

object and use a Strategy. Not all processes should be made

explicit. If the Ubiquitous Language specifically mentions the

respective process, then it is time for an explicit implementation.

The last method to make concepts explicit that we are addressing

here is Specification. Simply said, a Specification is used to test

an object to see if it satisfies a certain criteria.

64│DOMAIN DRIVEN DESIGN QUICKLY

The domain layer contains business rules which are applied to

Entities and Value Objects. Those rules are usually incorporated

into the objects they apply to. Some of these rules are just a set

of questions whose answer is “yes” or “no”. Such rules can be

expressed through a series of logical operations performed on

Boolean values, and the final result is also a Boolean. One such

example is the test performed on a Customer object to see if it is

eligible for a certain credit. The rule can be expressed as a

method, named isEligible(), and can be attached to the Customer

object. But this rule is not a simple method which operates

strictly on Customer data. Evaluating the rule involves verifying

the customer’s credentials, checking to see if he paid his debts in

the past, checking to see if he has outstanding balances, etc.

Such business rules can be large and complex, bloating the

object to the point that it no longer serves its original purpose. At

this point we might be tempted to move the entire rule to the

application level, because it seems that it stretches beyond the

domain level. Actually, it is time for a refactoring.

The rule should be encapsulated into an object of its own, which

becomes the Specification of the Customer, and should be kept

in the domain layer. The new object will contain a series of

Boolean methods which test if a certain Customer object is

eligible for credit or not. Each method plays the role of a small

test, and all methods combined give the answer to the original

question. If the business rule is not comprised in one

Specification object, the corresponding code will end up being

spread over a number of objects, making it inconsistent.

The Specification is used to test objects to see if they fulfill

some need, or if they are ready for some purpose. It can also be

used to select a certain object from a collection, or as a condition

during the creation of an object.

Often a single Specification checks if a simple rule is satisfied,

and then a number of such specifications are combined into a

composite one expressing the complex rule, like this:

REFACTORING TOWARD DEEPER INSIGHT│65

Customer customer =
customerRepository.findCustomer(customerIdentiy);

…
Specification customerEligibleForRefund = new
Specification(

new CustomerPaidHisDebtsInThePast(),

new CustomerHasNoOutstandingBalances());

if(customerEligibleForRefund.isSatisfiedBy(customer)
{
 refundService.issueRefundTo(customer);

}

Testing simple rules is simpler, and just from reading this code it

is obvious what it means that a customer is eligible for a refund.

5

Preserving Model Integrity

his chapter is about large projects which require the combined

efforts of multiple teams. We are faced with a different set of

challenges when multiple teams, under different management

and coordination, are set on the task of developing a project.

Enterprise projects are usually large projects, which employ

various technologies and resources. The design of such projects

should still be based on a domain model, and we need to take

appropriate measure to ensure the success of the project.

When multiple teams work on a project, code development is

done in parallel, each team being assigned a specific part of the

model. Those parts are not independent, but are more or less

interconnected. They all start with one big model, and they are

given a share of it to implement. Let’s say that one of the teams

has created a module, and they make it available for other teams

to use it. A developer from another team starts using the module,

and discovers that it is missing some functionality needed for his

own module. He adds the needed functionality and checks-in the

code so it can be used by all. What he might not realize is that

this is actually a change of the model, and it is quite possible that

this change will break application functionality. This can easily

happen, as nobody takes the time to fully understand the entire

model. Everybody knows his own backyard, but other areas are

not known in enough detail.

It is so easy to start from a good model and progress toward an

inconsistent one. The first requirement of a model is to be

consistent, with invariable terms and no contradictions. The

T

Free Online Version.

Support this work, buy the print copy:
http://www.infoq.com/minibooks/domain-driven-

design-quickly

68│DOMAIN DRIVEN DESIGN QUICKLY

internal consistency of a model is called unification. An

enterprise project could have one model covering the entire

domain of the enterprise, with no contradictions and overlapping

terms. A unified enterprise model is an ideal which is not easily

accomplished, and sometimes it is not even worth trying it. Such

projects need the combined effort of many teams. The teams

need a large degree of independence in the development process,

because they do not have the time to constantly meet and discuss

the design. The coordination of such teams is a daunting task.

They might belong to different departments and have separate

management. When the design of the model evolves partially

independently, we are facing the possibility to lose model

integrity. Preserving the model integrity by striving to maintain

one large unified model for the entire enterprise project is not

going to work. The solution is not so obvious, because it is the

opposite of all we have learned so far. Instead of trying to keep

one big model that will fall apart later, we should consciously

divide it into several models. Several models well integrated can

evolve independently as long as they obey the contract they are

bound to. Each model should have a clearly delimited border,

and the relationships between models should be defined with

precision.

We will present a set of techniques used to maintain model

integrity. The following drawing presents these techniques and

the relationship between them.

CONTEXT MAP

overlap allied contexts through

overlap unilaterally as

support multiple

clients through

formalize as

CONTINUOUS

INTEGRATION

CUSTOMER/

SUPPLIER

TEAMS

CONFORMIST

OPEN HOST

SERVICE

SEPARATE

WAYS

PUBLISHED

LANGUAGE

SHARED

KERNEL

relate allied contexts as

free teams to go

ANTICORRUPTION

LAYER

translate and insulate

unilaterally with

BOUNDED

CONTEXT

keep model unified by

assess/overview

 relationships with

UBIQUITOUS

LANGUAGE

names

enter

PRESERVING MODEL INTEGRITY│69

Bounded Context

Each model has a context. When we deal with a single model,

the context is implicit. We do not need to define it. When we

create an application which is supposed to interact with other

software, for example a legacy application, it is clear that the

new application has its own model and context, and they are

separated from the legacy model and its context. They cannot be

combined, mixed, or confused. But when we work on a large

enterprise application, we need to define the context for each

model we create.

Multiple models are in play on any large project. Yet when code

based on distinct models is combined, software becomes buggy,

unreliable, and difficult to understand. Communication among

team members becomes confused. It is often unclear in what

context a model should not be applied.

There is no formula to divide one large model into smaller ones.

Try to put in a model those elements which are related, and

which form a natural concept. A model should be small enough

to be assigned to one team. Team cooperation and

communication is more fluid and complete, which helps the

developers working on the same model. The context of a model

is the set of conditions which need to be applied to make sure

that the terms used in the model have a specific meaning.

The main idea is to define the scope of a model, to draw up the

boundaries of its context, then do the most possible to keep the

model unified. It is hard to keep a model pure when it spans the

entire enterprise project, but it is much easier when it is limited

to a specified area. Explicitly define the context within which a

model applies. Explicitly set boundaries in terms of team

organization, usage within specific parts of the application, and

physical manifestations such as code bases and database

schemas. Keep the model strictly consistent within these bounds,

but don’t be distracted or confused by issues outside.

70│DOMAIN DRIVEN DESIGN QUICKLY

A Bounded Context is not a Module. A Bounded Context

provides the logical frame inside of which the model evolves.

Modules are used to organize the elements of a model, so

Bounded Context encompasses the Module.

When different teams have to work on the same model, we must

be very careful not to step on each others toes. We have to be

constantly aware that changes to the model may break existing

functionality. When using multiple models, everybody can work

freely on their own piece. We all know the limits of our model,

and stay inside the borders. We just have to make sure we keep

the model pure, consistent and unified. Each model can support

refactoring much easier, without repercussions on other models.

The design can be refined and distilled in order to achieve

maximum purity.

There is a price to pay for having multiple models. We need to

define the borders and the relationships between different

models. This requires extra work and design effort, and there

will be perhaps some translation between different models. We

won’t be able to transfer any objects between different models,

and we cannot invoke behavior freely as if there was no

boundary. But this is not a very difficult task, and the benefits

are worth taking the trouble.

For example, we want to create an e-commerce application used

to sell stuff on the Internet. This application allows the

customers to register, and we collect their personal data,

including credit card numbers. The data is kept in a relational

database. The customers are allowed to log in, browse the site

looking for merchandise, and place orders. The application will

need to publish an event whenever an order has been placed,

because somebody will have to mail the requested item. We also

want to build a reporting interface used to create reports, so we

can monitor the status of available goods, what the customers are

interested in buying, what they don’t like, etc. In the beginning

we start with one model which covers the entire domain of e-

commerce. We are tempted to do so, because after all we have

been requested to create one big application. But if we consider

PRESERVING MODEL INTEGRITY│71

the task at hand more carefully, we discover that the e-shop

application is not really related to the reporting one. They have

separate concerns, they operate with different concepts, and they

may even need to use different technologies. The only thing

really common is that the customer and merchandise data is kept

in the database, and both applications access it.

The recommended approach is to create a separate model for

each of the domains, one for the e-commerce, and one for the

reporting. They can both evolve freely without much concern

about each other, and even become separate applications. It may

be the case that the reporting application needs some specific

data that the e-commerce application should store in the

database, but otherwise they can grow independently.

A messaging system is needed to inform the warehouse

personnel about the orders placed, so they can mail the

purchased merchandise. The mail personnel will use an

application which gives them detailed information about the

item purchased, the quantity, the customer address, and the

delivery requirements. There is no need to have the e-shop

model cover both domains of activity. It is much simpler for the

e-shop application to send Value Objects containing purchase

information to the warehouse using asynchronous messaging.

There are definitely two models which can be developed

separately, and we just need to make sure that the interface

between them works well.

Continuous Integration

Once a Bounded Context has been defined, we must keep it

sound. When a number of people are working in the same

Bounded Context, there is a strong tendency for the model to

fragment. The bigger the team, the bigger the problem, but as

few as three or four people can encounter serious problems.

72│DOMAIN DRIVEN DESIGN QUICKLY

However, breaking down the system into ever-smaller contexts

eventually loses a valuable level of integration and coherency.

Even when a team works in a Bounded Context there is room for

error. We need to communicate inside the team to make sure we

all understand the role played by each element in the model. If

one does not understand the relationships between objects, they

may modify the code in such a way that comes in contradiction

with the original intent. It is easy to make such a mistake when

we do not keep 100% focus on the purity of the model. One

member of the team might add code which duplicates existing

code without knowing it, or they might add duplicate code

instead of changing the current code, afraid of breaking existing

functionality.

A model is not fully defined from the beginning. It is created,

then it evolves continuously based on new insight in the domain

and feedback from the development process. That means that

new concepts may enter the model, and new elements are added

to the code. All these need are to be integrated into one unified

model, and implemented accordingly in code. That’s why

Continuous Integration is a necessary process within a Bounded

Context. We need a process of integration to make sure that all

the new elements which are added fit harmoniously into the rest

of the model, and are implemented correctly in code. We need to

have a procedure used to merge the code. The sooner we merge

the code the better. For a single small team, daily merges are

recommended. We also need to have a build process in place.

The merged code needs to be automatically built so it can be

tested. Another necessary requirement is to perform automated

tests. If the team has a test tool, and has created a test suite, the

test can be run upon each build, and any errors are signaled. The

code can be easily changed to fix the reported errors, because

they are caught early, and the merge, build, and test process is

started again.

Continuous Integration is based on integration of concepts in the

model, then finding its way into the implementation where it is

tested. Any inconsistency of the model can be spotted in the

PRESERVING MODEL INTEGRITY│73

implementation. Continuous Integration applies to a Bounded

Context, it is not used to deal with relationships between

neighboring Contexts.

Context Map

An enterprise application has multiple models, and each model

has its own Bounded Context. It is advisable to use the context

as the basis for team organization. People in the same team can

communicate more easily, and they can do a better job

integrating the model and the implementation. While every team

works on its model, it is good for everyone to have an idea of the

overall picture. A Context Map is a document which outlines the

different Bounded Contexts and the relationships between them.

A Context Map can be a diagram like the one below, or it can be

any written document. The level of detail may vary. What it is

important is that everyone working on the project shares and

understands it.

Model in Context

Model in Context

Translation

Map

It’s not enough to have separate unified models. They have to be

integrated, because each model’s functionality is just a part of

the entire system. In the end the pieces have to be assembled

74│DOMAIN DRIVEN DESIGN QUICKLY

together, and the entire system must work properly. If the

contexts are not clearly defined, it is possible they will overlap

each other. If the relationships between contexts are not outlined,

there is a chance they won’t work when the system is integrated.

Each Bounded Context should have a name which should be part

of the Ubiquitous Language. That helps the team communication

a lot when talking about the entire system. Everyone should

know the boundaries of each context and the mapping between

contexts and code. A common practice is to define the contexts,

then create modules for each context, and use a naming

convention to indicate the context each module belongs to.

In the following pages we talk about the interaction between

different contexts. We present a series of patterns which can be

used to create Context Maps where contexts have clear roles and

their relationships are pointed out. The Shared Kernel and

Customer-Supplier are patterns with a high degree of interaction

between contexts. Separate Ways is a pattern used when we

want the contexts to be highly independent and evolve

separately. There are another two patterns dealing with the

interaction between a system and a legacy system or an external

one, and they are Open Host Services and Anticorruption

Layers.

PRESERVING MODEL INTEGRITY│75

Shared Kernel

Translation

Map

shared

When functional integration is limited, the overhead of

Continuous Integration may be deemed too high. This may

especially be true when the teams do not have the skill or the

political organization to maintain continuous integration, or

when a single team is simply too big and unwieldy. So separate

Bounded Contexts might be defined and multiple teams formed.

Uncoordinated teams working on closely related applications

can go racing forward for a while, but what they produce may

not fit together. They can end up spending more on translation

layers and retrofitting than they would spend on Continuous

Integration in the first place, meanwhile duplicating effort and

losing the benefits of a common Ubiquitous Language.

Therefore, designate some subset of the domain model that the

two teams agree to share. Of course this includes, along with this

subset of the model, the subset of code or of the database design

associated with that part of the model. This explicitly shared

stuff has special status, and shouldn’t be changed without

consultation with the other team.

76│DOMAIN DRIVEN DESIGN QUICKLY

Integrate a functional system frequently, but somewhat less often

than the pace of Continuous Integration within the teams. During

these integrations, run the tests of both teams.

The purpose of the Shared Kernel is to reduce duplication, but

still keep two separate contexts. Development on a Shared

Kernel needs a lot of care. Both teams may modify the kernel

code, and they have to integrate the changes. If the teams use

separate copies of the kernel code, they have to merge the code

as soon as possible, at least weekly. A test suite should be in

place, so every change done to the kernel to be tested right away.

Any change of the kernel should be communicated to another

team, and the teams should be informed, making them aware of

the new functionality.

Customer-Supplier

There are times when two subsystems have a special

relationship: one depends a lot on the other. The contexts in

which those two subsystems exist are different, and the

processing result of one system is fed into the other. They do not

have a Shared Kernel, because it may not be conceptually

correct to have one, or it may not even be technically possible

for the two subsystems to share common code. The two

subsystems are in a Customer-Supplier relationship.

Let’s return to a previous example. We talked earlier about the

models involved in an e-commerce application, which includes

reporting and messaging. We already said that it is much better

to create separate models for all these contexts, because a single

model would be a constant bottleneck and source of contention

in the development process. Assuming that we agree to have

separate models, what should be the relationships between the

web shopping subsystem and the reporting one? The Shared

Kernel does not seem to be the right choice. The subsystem will

most likely use different technologies to be implemented. One is

PRESERVING MODEL INTEGRITY│77

a pure browser experience, while the other could be a rich GUI

application. Even if the reporting application is done using a web

interface, the main concepts of the respective models are

different. There might be some overlapping, but not enough to

justify a Shared Kernel. So we choose to go on a different path.

On the other hand, the e-shopping subsystem does not depend at

all on the reporting one. The users of the e-shopping application

are web customers who browse for merchandise and place

orders. All the customer, merchandise and orders data is placed

in a database. And that’s it. The e-shopping application is not

really interested in what happens with the respective data. In the

meantime, the reporting application is very interested in and

needs the data saved by the e-shopping application. It also needs

some extra information to carry out the reporting services it

provides. The customers might put some merchandise in the

basket, and then drop it before check out. The customers might

visit some links more than others. This kind of information has

no meaning for the e-shopping application, but it may mean a lot

for the reporting one. Following that, the supplier subsystem has

to implement some specifications which are needed by the

customer subsystem. This is one connection between the two

subsystems.

Another requirement is related to the database used, more

exactly its schema. Both applications will make use of the same

database. If the e-shopping subsystem was the only one to access

the database, the database schema could be changed any time to

reflect its needs. But the reporting subsystem needs to access the

database too, so it needs some stability of its schema. It’s

impossible to imagine that the database schema won’t change at

all during the development process. This won’t represent a

problem for the e-shopping application, but it will certainly be a

problem for the reporting one. The two teams will need to

communicate, probably they will have to work on the database

together, and decide when the change is to be performed. This

will act as a limitation for the reporting subsystem, because that

team would prefer to swiftly do the change and move on with

the development, instead of waiting on the e-shopping app. If the

e-shopping team has veto rights, they may impose limits on the

78│DOMAIN DRIVEN DESIGN QUICKLY

changes to be done to the database, hurting the reporting team’s

activity. If the e-shopping team can act independently, they will

break the agreements sooner or later, and implement some

changes which the reporting team is not prepared for. This

pattern works well when the teams are under the same

management. This eases the decision making process, and

creates harmony.

When we are faced with such a scenario, we should start acting.

The reporting team should play the customer role, while the e-

shopping team should play the supplier role. The two teams

should meet regularly or upon request, and chat as a customer

does with his supplier. The customer team should present its

requirements, while the supplier team should make the plans

accordingly. While all the customer team’s requirements will

have to be met in the end, the timetable for doing that is decided

by the supplier team. If some requirements are considered really

important, they should be implemented sooner, while other

requirements might be postponed. The customer team will also

need input and knowledge to be shared by the supplier team.

This process flows one way, but it is necessary in some cases.

The interface between the two subsystems needs to be precisely

defined. A conformity test suite should be created and used to

test at any time if the interface requirements are respected. The

supplier team will be able to work more unreservedly on their

design because the safe net of the interface test suite alerts them

whenever it is a problem.

Establish a clear customer/supplier relationship between the two

teams. In planning sessions, make the customer team play a

customer role to the supplier team. Negotiate and budget tasks

for customer requirements so that everyone understands the

commitment and schedule.

Jointly develop automated acceptance tests that will validate the

interface expected. Add these tests to the supplier team’s test

suite, to be run as part of its continuous integration. This testing

will free the supplier team to make changes without fear of side

effects to the customer team’s application.

PRESERVING MODEL INTEGRITY│79

Conformist

A Customer-Supplier relationship is viable when both teams are

interested in the relationship. The customer is very dependent on

the supplier, while the supplier is not. If there is a management

to make this work, the supplier will pay the needed attention and

will listen to the customer’s requests. If the management has not

decided clearly how things are supposed to be between the two

teams, or if there is poor management or lack of it, the supplier

will slowly be more concerned about its model and design, and

less interested in helping the customer. They have their own

deadlines after all. Even if they are good people, willing to help

the other team, the time pressure will have its say, and the

customer team will suffer. This also happens when the teams

belong to different companies. Communication is difficult, and

the supplier’s company may not be interested to invest too much

in this relationship. They will either provide sporadic help, or

simply refuse to cooperate at all. The result is that the customer

team is on its own, trying to do their best with the model and the

design.

When two development teams have a Customer-Supplier

relationship in which the supplier team has no motivation to

provide for the customer team’s needs, the customer team is

helpless. Altruism may motivate supplier developers to make

promises, but they are unlikely to be fulfilled. Belief in those

good intentions leads the customer team to make plans based on

features that will never be available. The customer project will

be delayed until the team ultimately learns to live with what it is

given. An interface tailored to the needs of the customer team is

not in the cards.

The customer team has few options. The most obvious one is to

separate from the supplier and to be completely on their own.

We will look at this later in the pattern Separate Ways.

Sometimes the benefits provided by the supplier subsystem are

not worth the trouble. It might be simpler to create a separate

80│DOMAIN DRIVEN DESIGN QUICKLY

model, and design without having to give a thought to the

supplier’s model. But this is not always the case.

Sometimes there is some value in the supplier’s model, and a

connection has to be maintained. But because the supplier team

does not help the customer team, the latter has to take some

measures to protect itself from model changes performed by the

former team. They will have to implement a translation layer

which connects the two contexts. It is also possible that the

supplier team’s model could be poorly conceived making its

utilization awkward. The customer context can still make use of

it, but it should protect itself by using an Anticorruption Layer

which we will discuss later.

If the customer has to use the supplier team’s model, and if that

is well done, it may be time for conformity. The customer team

could adhere to the supplier team’s model, conforming entirely

to it. This is much like the Shared Kernel, but there is an

important difference. The customer team cannot make changes

to the kernel. They can only use it as part of their model, and

they can build on the existing code provided. There are many

times when such a solution is viable. When somebody provides a

rich component, and provides an interface to it, we can build our

model including the respective component as it would be our

own. If the component has a small interface, it might be better to

simply create an adapter for it, and translate between our model

and the component’s model. This would isolate our model, and

we can develop it with a high degree of freedom.

Anticorruption Layer

We often encounter circumstances when we create an

application which has to interact with legacy software or a

separate application. This is another challenge for the domain

modeler. Many legacy applications have not been built using

domain modeling techniques, and their model is confused,

PRESERVING MODEL INTEGRITY│81

entangled hard to understand and hard to work with. Even if it

was well done, the legacy application model is not of much use

for us, because our model is likely to be quite different.

Nonetheless, there has to be a level of integration between our

model and the legacy one, because it is one of the requirements

to use the old application.

There are different ways for our client system to interact with an

external one. One is via network connections. Both applications

need to use the same network communication protocols, and the

client needs to adhere to the interface used by the external

system. Another method of interaction is the database. The

external system works with data stored in a database. The client

system is supposed to access the same database. In both cases

we are dealing with primitive data being transferred between the

systems. While this seems to be fairly simple, the truth is that

primitive data does not contain any information about the

models. We cannot take data from a database and treat it all as

primitive data. There is a lot of semantics hidden behind the

data. A relational database contains primitive data related to

other primitive data creating a web of relationships. The data

semantics is very important, and needs to be considered. The

client application can’t access the database and write to it

without understanding the meaning of the data used. We see that

parts of the external model are reflected in the database, and

make their way into our model.

There is the risk for the external model to alter the client model

if we allow that to happen. We can’t ignore the interaction with

the external model, but we should be careful to isolate our own

model from it. We should build an Anticorruption Layer which

stands between our client model and the external one. From our

model’s perspective, the Anticorruption Layer is a natural part of

the model; it does not look like something foreign. It operates

with concepts and actions familiar to our model. But the

Anticorruption Layer talks to the external model using the

external language not the client one. This layer works as a two

way translator between two domains and languages. The greatest

82│DOMAIN DRIVEN DESIGN QUICKLY

achievement is that the client model remains pure and consistent

without being contaminated by the external one.

How should we implement the Anticorruption Layer? A very

good solution is to see the layer as a Service from the client

model. It is very simple to use a Service because it abstracts the

other system and let us address it in our own terms. The Service

will do the needed translation, so our model remains insulated.

Regarding the actual implementation, the Service will be done as

a Façade. (See Design Pattern by Gamma et al. 1995) Besides

that, the Anticorruption Layer will most likely need an Adapter.

The Adapter allows you to convert the interface of a class to the

one understood by the client. In our case the Adapter does not

necessarily wrap a class, because its job is to translate between

two systems.

The Anticorruption Layer may contain more than one Service.

For each Service there is a corresponding Façade, and for each

Façade we add an Adapter. We should not use a single Adapter

for all Services, because we clutter it with mixed functionality.

We still have to add one more component. The Adapter takes

care of wrapping up the behavior of the external system. We also

need object and data conversion. This is done using a translator.

Anticorruption Layer

Façade F1 Adapter
A1

Façade F2
Adapter

A2

Façade F3

Translator T2

Translator
T1

Class C1

Class C2

Class C3

Interface
I1

External
Client

System

PRESERVING MODEL INTEGRITY│83

This can be a very simple object, with little functionality,

serving the basic need of data translation. If the external system

has a complex interface, it may be better to add an additional

Façade between the adapters and that interface. This will

simplify the Adapter’s protocol, and separate it from the other

system.

Separate Ways

So far we have tried to find ways to integrate subsystems, make

them work together, and do it in such a way that would keep the

model and the design sound. This requires effort and

compromise. Teams that work on the respective subsystems

need to spend considerable time to iron out the relationships

between the subsystems. They may need to do constant merging

of their code, and perform tests to make sure they have not

broken anything. Sometimes, one of the team needs to spend

considerable time just to implement some requirements which

are needed by the other team. There are also compromises to be

made. It’s one thing to develop independently, to choose the

concepts and associations freely, and another thing to make sure

that your model fits into the framework of another system. We

may need to alter the model just to make it work with the other

subsystem. Or we may need to introduce special layers which

perform translations between the two subsystems. There are

times when we have to do that, but there are times when we can

go a different path. We need to closely evaluate the benefits of

integration and use it only if there is real value in doing so. If we

reach the conclusion that integration is more trouble than it is

worth, then we should go the Separate Ways.

The Separate Ways pattern addresses the case when an

enterprise application can be made up of several smaller

applications which have little or nothing in common from a

modeling perspective. There is a single set of requirements, and

84│DOMAIN DRIVEN DESIGN QUICKLY

from the user’s perspective this is one application, but from a

modeling and design point of view it may done using separate

models with distinct implementations. We should look at the

requirements and see if they can be divided in two or more sets

which do not have much in common. If that can be done, then

we can create separate Bounded Contexts and do the modeling

independently. This has the advantage of having the freedom to

choose the technologies used for implementation. The

applications we are creating may share a common thin GUI

which acts as a portal with links or buttons used to access each

application. That is a minor integration which has to do with

organizing the applications, rather than the model behind them.

Before going on Separate Ways we need to make sure that we

won’t be coming back to an integrated system. Models

developed independently are very difficult to integrate. They

have so little in common that it is just not worth doing it.

Open Host Service

When we try to integrate two subsystems, we usually create a

translation layer between them. This layer acts as a buffer

between the client subsystem and the external subsystem we

want to integrate with. This layer can be a consistent one,

depending on the complexity of relationships and how the

external subsystem was designed. If the external subsystem turns

out to be used not by one client subsystem, but by several ones,

we need to create translation layers for all of them. All those

layers will repeat the same translation task, and will contain

similar code.

When a subsystem has to be integrated with many others,

customizing a translator for each can bog down the team. There

is more and more to maintain, and more and more to worry

about when changes are made.

PRESERVING MODEL INTEGRITY│85

The solution is to see the external subsystem as a provider of

services. If we can wrap a set of Services around it, then all the

other subsystems will access these Services, and we won’t need

any translation layer. The difficulty is that each subsystem may

need to interact in a specific way with the external subsystem,

and to create a coherent set of Services may be problematic.

Define a protocol that gives access to your subsystem as a set of

Services. Open the protocol so that all who need to integrate

with you can use it. Enhance and expand the protocol to handle

new integration requirements, except when a single team has

idiosyncratic needs. Then, use a one-off translator to augment

the protocol for that special case so that the shared protocol can

stay simple and coherent.

Distillation

Distillation is the process of separating the substances

composing a mixture. The purpose of distillation is to extract a

particular substance from the mixture. During the distillation

process, some byproducts may be obtained, and they can also be

of interest.

A large domain has a large model even after we have refined it

and created many abstractions. It can remain big even after many

refactorings. In situations like this, it may be time for a

distillation. The idea is to define a Core Domain which

represents the essence of the domain. The byproducts of the

distillation process will be Generic Subdomains which will

comprise the other parts of the domain.

In designing a large system, there are so many contributing

components, all complicated and all absolutely necessary to

success, that the essence of the domain model, the real business

asset, can be obscured and neglected.

86│DOMAIN DRIVEN DESIGN QUICKLY

When working with a large model, we should try to separate the

essential concepts from generic ones. In the beginning we gave

the example of an air traffic monitoring system. We said that a

Flight Plan contains the designed Route the plane must follow.

The Route seems to be an ever present concept in this system.

Actually, this concept is a generic one, and not an essential one.

The Route concept is used in many domains, and a generic

model can be designed to describe it. The essence of the air

traffic monitoring is somewhere else. The monitoring system

knows the route that the plane should follow, but it also receives

input from a network of radars tracking the plane in the air. This

data shows the actual path followed by the plane, and it is

usually different from the prescribed one. The system will have

to compute the trajectory of the plane based on its current flight

parameters, plane characteristics and weather. The trajectory is a

four dimensional path which completely describes the route that

the plane will travel in time. The trajectory may be computed for

the next couple of minutes, for the next dozens of minutes or for

the next couple of hours. Each of those calculations help the

decision making process. The entire purpose of computing the

trajectory of the plane is to see if there is any chance for this

plane’s path to cross another’s. In the vicinity of airports, during

take off and landing, many planes are circling in the air or

making maneuvers. If a plane strays away from its planned

route, there is a high possibility for a plane crash to occur. The

air traffic monitoring system will compute the trajectories of

planes, and will issue an alert if there is a possibility for an

intersection. The air traffic controllers will have to make quick

decisions, directing the planes in order to avoid the collision.

When the planes are further apart, the trajectories are computed

for longer periods of time, and there is more time for reaction.

The module which synthesizes the plane trajectory from the

available data is the heart of the business system here. This

should be marked out as the core domain. The routing model is

more of a generic domain.

The Core Domain of a system depends on how we look at the

system. A simple routing system will see the Route and its

dependencies as central to the design. The air traffic monitoring

PRESERVING MODEL INTEGRITY│87

system will consider the Route as a generic subdomain. The

Core Domain of an application may become a generic

subdomain of another. It is important to correctly identify the

Core, and determine the relationships it has with other parts of

the model.

Boil the model down. Find the Core Domain and provide a

means of easily distinguishing it from the mass of supporting

model and code. Emphasize the most valuable and specialized

concepts. Make the Core small.

Apply your top talent to the Core Domain, and recruit

accordingly. Spend the effort in the Core to find a deep model

and develop a supple design—sufficient to fulfill the vision of

the system. Justify investment in any other part by how it

supports the distilled Core.

It is important to assign the best developers to the task of

implementing the Core Domain. Developers usually tend to like

technologies, to learn the best and latest language, being driven

more to the infrastructure rather than the business logic. The

business logic of a domain seems to be boring to them, and of

little reward. After all, what’s the point in learning specifics

about plane trajectories? When the project is done, all that

knowledge becomes a thing of the past with very little benefit.

But the business logic of the domain is the heart of the domain.

Mistakes in the design and implementation of the core can lead

to the entire abandonment of the project. If the core business

logic does not do its job, all the technological bells and whistles

will amount to nothing.

A Core Domain is not usually created in one final step. There is

a process of refinement and successive refactorings are

necessary before the Core emerges more clearly. We need to

enforce the Core as central piece of the design, and delimitate its

boundaries. We also need to rethink the other elements of the

model in relationship with the new Core. They may need to be

refactored too, some functionality may need to be changed.

88│DOMAIN DRIVEN DESIGN QUICKLY

Some parts of the model add complexity without capturing or

communicating specialized knowledge. Anything extraneous

makes the Core Domain harder to discern and understand. The

model clogs up with general principles everyone knows or

details that belong to specialties which are not your primary

focus but play a supporting role. Yet, however generic, these

other elements are essential to the functioning of the system and

the full expression of the model.

Identify cohesive subdomains that are not the motivation for

your project. Factor out generic models of these subdomains and

place them in separate Modules. Leave no trace of your

specialties in them.

Once they have been separated, give their continuing

development lower priority than the Core Domain, and avoid

assigning your core developers to the tasks (because they will

gain little domain knowledge from them). Also consider off-the-

shelf solutions or published models for these Generic

Subdomains.

Every domain uses concepts that are used by other domains.

Money and their related concepts like currency and exchange

rate can be included in different systems. Charting is another

widely used concept, which is very complex in itself, but it can

be used in many applications.

There are different ways to implement a Generic Subdomain:

1. Off-the-shelf Solution. This one has the advantage of

having the entire solution already done by someone else.

There is still a learning curve associated with it, and such

a solution introduces some dependencies. If the code is

buggy, you have to wait to be fixed. You also need to use

certain compilers and library versions. Integration is not

so easily accomplished compared to an in-house system.

2. Outsourcing. The design and implementation is given to

another team, probably from another company. This lets

you focus on the Core Domain, and takes off the burden

PRESERVING MODEL INTEGRITY│89

of another domain to deal with. There is still the

inconvenience of integrating the outsourced code. The

interface used to communicate with the subdomain needs

to be defined and communicated to the other team.

3. Existing Model. One handy solution is to use an already

created model. There are some books which have

published analysis patterns, and they can be used as

inspiration for our subdomains. It may not be possible to

copy the patterns ad literam, but many of them can be

used with small changes.

4. In-House Implementation. This solution has the

advantage of achieving the best level of integration. It

does mean extra effort, including the maintenance

burden.

6

DDD Matters Today:
An interview with Eric Evans

nfoQ.com interviews Domain Driven Design founder Eric Evans

to put Domain Driven Design in a modern context:

Why is DDD as important today as ever?

Fundamentally, DDD is the principle that we should be focusing

on the deep issues of the domain our users are engaged in, that

the best part of our minds should be devoted to understanding

that domain, and collaborating with experts in that domain to

wrestle it into a conceptual form that we can use to build

powerful, flexible software.

This is a principle that will not go out of style. It applies

whenever we are operating in a complex, intricate domain.

The long-term trend is toward applying software to more and

more complex problems deeper and deeper into the heart of

these businesses. It seems to me this trend was interrupted for a

few years, as the web burst upon us. Attention was diverted

away from rich logic and deep solutions, because there was so

much value in just getting data onto the web, along with very

simple behavior. There was a lot of that to do, and just doing

simple things on the web was difficult for a while, so that

absorbed all the development effort.

I

Free Online Version.

Support this work, buy the print copy:
http://www.infoq.com/minibooks/domain-driven-

design-quickly

92│DOMAIN DRIVEN DESIGN QUICKLY

But now that basic level of web usage has largely been

assimilated, and projects are starting to get more ambitious again

about business logic.

Very recently, web development platforms have begun to mature

enough to make web development productive enough for DDD,

and there are a number of positive trends. For example, SOA,

when it is used well, provides us a very useful way of isolating

the domain.

Meanwhile, Agile processes have had enough influence that

most projects now have at least an intention of iterating, working

closely with business partners, applying continuous integration,

and working in a high-communication environment.

So DDD looks to be increasingly important for the foreseeable

future, and some foundations seem to be laid.

Technology platforms (Java, .NET, Ruby, others) are

continually evolving. How does Domain Driven Design fit in?

In fact, new technologies and processes should be judged on

whether they support teams to focus on their domain, rather than

distracting them from it. DDD is not specific to a technology

platform, but some platforms give more expressive ways of

creating business logic, and some platforms have less distracting

clutter. In regards to the later, the last few years indicate a

hopeful direction, particularly after the awful late 1990s.

Java has been the default choice of the last few years, and as for

expressiveness, it is typical of object-oriented languages. As for

distracting clutter, the base language is not too bad. It has

garbage collection, which, in practice, turns out to be essential.

(In contrast to C++, which just demanded too much attention to

low-level details.) The Java syntax has some clutter, but plain

old java objects (POJOs) can still be made readable. And some

of the Java 5 syntax innovations help readability.

But back when the J2EE frameworks first came out, it utterly

buried that basic expressiveness under mountains of framework

code. Following the early conventions (such as EJB home,

DDD MATTERS TODAY│93

get/set prefixed accessors for all variables, etc.) produced terrible

objects. The tools were so cumbersome that it absorbed all the

capacity of the development teams just to make it work. And it

was so difficult to change objects, once the huge mess of

generated code and XML had been spewed, that people just

didn't change them much. This was a platform that made

effective domain modeling almost impossible.

Combine that with the imperative to produce Web UIs mediated

by http and html (which were not designed for that purpose)

using quite primitive, first-generation tools. During that period,

creating and maintaining a decent UI became so difficult that

little attention was left for design of complex internal

functionality. Ironically, at the very moment that object

technology took over, sophisticated modeling and design took a

heavy hit.

The situation was similar in the .Net platform, with some issues

being handled a little better, and others a little worse.

That was a discouraging period, but trends have turned in the

last four years or so. First, looking at Java, there has been a

confluence of a new sophistication in the community about how

to use frameworks selectively, and a menagerie of new

frameworks (mostly open-source) that are incrementally

improving. Frameworks such as Hibernate and Spring handle

specific jobs that J2EE tried to address, but in a much lighter

way. Approaches like AJAX which try to tackle the UI problem,

in a less labor-intensive way. And projects are much smarter

now about picking and choosing the elements of J2EE that give

them value and mixing in some of these newer elements. The

term POJO was coined during this era.

The result is an incremental but noticeable decrease in the

technical effort of projects, and a distinct improvement in

isolating the business logic from the rest of the system so that it

can be written in terms of POJOs. This does not automatically

produce a domain-driven design, but it makes it a realistic

opportunity.

94│DOMAIN DRIVEN DESIGN QUICKLY

That is the Java world. Then you have the new-comers like

Ruby. Ruby has a very expressive syntax, and at this basic level

it should be a very good language for DDD (although I haven't

heard of much actual use of it in those sorts of applications yet).

Rails has generated a lot of excitement because it finally seems

to make creation of Web UIs as easy as UIs were back in the

early 1990s, before the Web. Right now, this capability has

mostly been applied to building some of the vast number of Web

applications which don't have much domain richness behind

them, since even these have been painfully difficult in the past.

But my hope is that, as the UI implementation part of the

problem is reduced, that people will see this as an opportunity to

focus more of their attention on the domain. If Ruby usage ever

starts going in that direction, I think it could provide an excellent

platform for DDD. (A few infrastructure pieces would probably

have to be filled in.)

More out on the cutting-edge are the efforts in the area of

domain-specific languages (DSLs), which I have long believed

could be the next big step for DDD. To date, we still don't have a

tool that really gives us what we need. But people are

experimenting more than ever in this area, and that makes me

hopeful.

Right now, as far as I can tell, most people attempting to apply

DDD are working in Java or .Net, with a few in Smalltalk. So it

is the positive trend in the Java world that is having the

immediate effect.

What’s been happening in the DDD community since you’ve

written your book?

One thing that excites me is when people take the principles I

talked about in my book and use them in ways I never expected.

An example is the use of strategic design at StatOil, the

Norwegian national oil company. The architects there wrote an

experience report about it. (You can read it at

http://domaindrivendesign.org/articles/.)

DDD MATTERS TODAY│95

Among other things, they took context mapping and applied it to

evaluation of off-the-shelf software in build vs. buy decisions.

As a quite different example, some of us have been exploring

some issues by developing a Java code library of some

fundamental domain objects needed by many projects. People

can check that out at:

http://timeandmoney.domainlanguage.com

We've been exploring, for example, how far can we push the

idea of a fluent, domain-specific language, while still

implementing objects in Java.

Quite a bit is going on out there. I always appreciate when

people contact me to tell me about what they're doing.

Do you have any advice for people trying to learn DDD today?

Read my book! ;-) Also, try using timeandmoney on your

project. One of our original objectives was to provide a good

example that people could learn from by using it.

One thing to keep in mind is that DDD is largely something

teams do, so you may have to be an evangelist. Realistically, you

may want to go search for a project where they are making an

effort to do this.

Keep in mind some of the pitfalls of domain modeling:

1) Stay hands-on. Modelers need to code.

2) Focus on concrete scenarios. Abstract thinking has to be

anchored in concrete cases.

3) Don't try to apply DDD to everything. Draw a context map

and decide on where you will make a push for DDD and where

you will not. And then don't worry about it outside those

boundaries.

 4) Experiment a lot and expect to make lots of mistakes.

Modeling is a creative process.

96│DOMAIN DRIVEN DESIGN QUICKLY

About Eric Evans

Eric Evans is the author of "Domain-Driven Design: Tackling

Complexity in Software," Addison-Wesley 2004.

Since the early 1990s, he has worked on many projects

developing large business systems with objects with many

different approaches and many different outcomes. The book is a

synthesis of that experience. It presents a system of modeling

and design techniques that successful teams have used to align

complex software systems with business needs and to keep

projects agile as systems grow large.

Eric now leads "Domain Language", a consulting group which

coaches and trains teams applying domain-driven design,

helping them to make their development work more productive

and more valuable to their business.

Advertisement on behalf of Eric Evans

Our Services

We help ambitious software projects realize the potential of

domain-driven design and agile processes.

To make domain modeling and design really work for a project

requires that high-level and detailed design come together. That's

why we offer a combination of services that can really get a

domain-driven design process off the ground.

Our training courses and hands-on mentors strengthen the team’s

basic skills in modeling and deploying an effective

implementation. Our coaches focus the team's effort and iron out

process glitches that get in the way of designing the system most

meaningful to the business. Our strategic design consultants take

on those problems that affect the trajectory of the whole project,

facilitating the development of a big picture that supports

development and steers the project toward the organization's

goals.

Start With Assessment

The assessment we provide will give you perspective as well as

concrete recommendations. We will clarify where you are now,

where you want to go, and start to draw a roadmap for how to

get you to that goal.

To Schedule an Assessment

For rates, schedules, and more information, call 415-401-7020 or

write to info@ domainlanguage.com.

www.domainlanguage.com

