
[1]

Developing Microservices

with Node.js

Learn to develop efficient and scalable microservices
for server-side programming in Node.js using this
hands-on guide

David Gonzalez

BIRMINGHAM - MUMBAI

Developing Microservices with Node.js

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1220416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-740-6

www.packtpub.com

Credits

Author
David Gonzalez

Reviewer
Kishore Kumar Yekkanti

Commissioning Editor
Veena Pagare

Acquisition Editor
Divya Poojari

Content Development Editor
Abhishek Jadhav

Technical Editor
Pranil Pathare

Copy Editor
Vibha Shukla

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

David Gonzalez is a language-agnostic software engineer working in financial
services for a number of years, trying to find solutions for the right level of
abstraction and learning how to get the right balance between too concrete
and too abstract.

He studied in Spain, but soon moved to the wider and more interesting market
of Dublin, where he has been living since 2011. David is currently working as an
independent consultant in the FinTech sector. The URL to his Linkedin account is
https://ie.linkedin.com/in/david-gonzalez-737b7383.

He loves experimenting with new technologies and paradigms in order to get the
broader picture of the complex world of software development.

To my wife, Ester, thanks for your unconditional support in every
single aspect of my life.

To my unborn daughter, Elena, may the life give you all the
happiness that you are bringing to your parents.

https://ie.linkedin.com/in/david-gonzalez-737b7383

About the Reviewer

Kishore Kumar Yekkanti is an experienced professional who has worked across
various domains and technologies over the past ten years. He is passionate about
eliminating the waste during the software development. Kishore is a huge contributor
to and follower of agile principles. He is a full-stack developer who wants to build
the end-to-end systems, and a polyglot programmer. His current focus is on scaling
microservices in highly distributed applications that are deployed using container-
based systems (Docker) on cloud. He has worked as the lead/principal engineer
for many well-known companies such as Thoughtworks, CurrencyFair, and others,
where he lead the teams to attain nirvana through microservices.

For my partner and best friend Jyothsna, and my daughter, Dhruti,
who continues to humour me despite of my crazy schedules.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: Microservices Architecture 1

Need for microservices 1
Monolithic software 2

Microservices in the real world 2

Microservice-oriented architectures 3
How is it better? 3
Shortcomings 3

Key design principles 4
Business units, no components 5
Smart services, dumb communication pipes 8
Decentralization 9

Technology alignment 12
How small is too small? 12

Key benefits 13
Resilience 13
Scalability 14
Technology heterogeneity 15
Replaceability 17
Independence 18

Why is replaceability important? 18
Easy to deploy 18

SOA versus microservices 19
Why Node.js? 20

API aggregation 21
The future of Node.js 22

Summary 23

Table of Contents

[ii]

Chapter 2: Microservices in Node.js – Seneca and
PM2 Alternatives 25

Need for Node.js 25
Installing Node.js, npm, Seneca, and PM2 26

Learning npm 27
Our first program – Hello World 29
Node.js threading model 31
Modular organization best practices 31

Javascript 32
SOLID design principles 33

Seneca – a microservices framework 36
Inversion of control done right 39
Pattern matching in Seneca 40

Patrun – a pattern-matching library 41
Reusing patterns 42
Writing plugins 43
Web server integration 47

PM2 – a task runner for Node.js 51
Single-threaded applications and exceptions 51
Using PM2 – the industry-standard task runner 53

Summary 58
Chapter 3: From the Monolith to Microservices 59

First, there was the monolith 60
How to tackle organic growth? 60
How abstract is too abstract? 63

Then the microservices appeared 64
Disadvantages 71
Splitting the monolith 71
Problems splitting the monolith – it is all about the data 72

Organizational alignment 73
Summary 75

Chapter 4: Writing Your First Microservice in Node.js 77
Micromerce – the big picture 77
Product Manager – the two-faced core 79

Fetching products 81
Fetching by category 82
Fetching by ID 82
Adding a product 83
Removing a product 84
Editing a product 84

Table of Contents

[iii]

Wiring everything up 85
Integrating with Express – how to create a REST API 89

The e-mailer – a common problem 90
How to send e-mails 91
Defining the interface 91
Setting up Mandrill 92
Hands on – integrating Mandrill in your microservice 94
The fallback strategy 99

The order manager 101
Defining the microservice – how to gather non-local data 101
The order manager – the code 105

Calling remote services 105
Resilience over perfection 107

The UI – API aggregation 108
Need for frontend microservice 109
The code 109
Service degradation – when the failure is not a disaster 117
Circuit breakers 118
Seneca – a simple puzzle that makes our lives easier 120
Seneca and promises 122

Debugging 126
Summary 129

Chapter 5: Security and Traceability 131
Infrastructure logical security 131

SSH – encrypting the communications 132
Application security 135

Common threats – how to be up to date 135
Injection 136
Cross-site scripting 139
Cross-site request forgery 141
Open redirects 143

Effective code reviews 144
Traceability 145

Logging 145
Tracing requests 147
Auditing 148
HTTP codes 149

1xx – informational 150
2xx – success codes 150
3xx – redirection 150
4xx – client errors 151

Table of Contents

[iv]

5xx – server errors 151
Why HTTP codes matter in microservices 152

Summary 152
Chapter 6: Testing and Documenting Node.js Microservices 153

Functional testing 154
The pyramid of automated testing 156

Unit tests 156
Integration tests 156
End-to-end tests 157
How much testing is too much? 158

Testing microservices in Node.js 160
Chai 160
Mocha 165
Sinon.JS – a mocking framework 169
Testing a real microservice 173
Manual testing – the necessary evil 184

Documenting microservices 189
Documenting APIs with Swagger 189
Generating a project from the Swagger definition 197

Summary 199
Chapter 7: Monitoring Microservices 201

Monitoring services 201
Monitoring using PM2 and Keymetrics 202

Diagnosing problems 207
Monitoring application exceptions 212
Custom metrics 214

Simian Army – the active monitoring from Spotify 218
Throughput and performance degradation 221

Summary 224
Chapter 8: Deploying Microservices 225

Concepts in software deployment 225
Continuous integration 226
Continuous delivery 226

Deployments with PM2 227
PM2 – ecosystems 227
Deploying microservices with PM2 229

Configuring the server 229
Docker – a container for software delivery 231

Setting up the container 233
Installing Docker 233
Choosing the image 233
Running the container 235

Table of Contents

[v]

Installing the required software 236
Saving the changes 237

Deploying Node.js applications 239
Automating Docker container creation 241

Node.js event loop – easy to learn and hard to master 244
Clustering Node.js applications 246
Load balancing our application 253

Health check on NGINX 258
Passive health check 258
Active health check 259

Summary 260
Index 261

[vii]

Preface

This book is a hands-on guide to start writing microservices using Node.js and
the most modern frameworks, especially Seneca and PM2. In the chapters, we will
discuss how to design, build, test, and deploy microservices using the best practices.
We will also discuss a valuable lesson: how to make the right level of compromise
in order to avoid over-designing and get the business requirements aligned with the
technical solutions.

What this book covers
Chapter 1, Microservices Architecture, discusses the pros and cons of microservices-
oriented architectures. It will be the foundation for the rest of the book.

Chapter 2, Microservices in Node.js – Seneca and PM2 Alternatives, introduces Node.js,
Seneca, and PM2. In it, we will discuss the structure of a Node.js application and how
to run it using PM2. We will also dive into a few alternatives to Seneca and PM2.

Chapter 3, From the Monolith to Microservices, covers how to tackle the organic growth
(unplanned software changes) using microservices. We will also talk about how to
split a monolithic application into microservices.

Chapter 4, Writing Your First Microservice in Node.js, explains how to write our
first microservice.

Chapter 5, Security and Traceability, covers how security and traceability are two
important characteristics of modern systems. We need to keep the information secure
and the actions traceable. In this chapter, we will discuss how to do it using Seneca.

Preface

[viii]

Chapter 6, Testing and Documenting Node.js Microservices, introduces using the main
frameworks for testing on Node.js: Mocha and Chai. We will also make use of Sinon
(another framework) to mock services. Swagger will be our choice for documenting
microservices.

Chapter 7, Monitoring Microservices, covers using PM2 to monitor our microservices.
We will use it along with Keymetrics to get the maximum benefit of such an
advanced tool.

Chapter 8, Deploying Microservices, explains how, using PM2, we are going to learn
to deploy microservices in our different environments, managing our ecosystem of
applications with a single command and reducing the overhead introduced by the
microservices architecture. We will also discuss Docker, one of the most advanced
systems to deploy applications not only in Node.js, but also in general applications.

What you need for this book
In order to follow the book, we are going to need to install Node.js, PM2 (it is a
package that is installed through npm), and MongoDB.

We will also need an editor. Personally, I use Atom, but any general purpose editor
should be enough.

Who this book is for
This book is for developers that have some experience with Node.js but want to learn
about Seneca and microservices. It is 70% practice-oriented (as we will be writing
a lot of code), but it also is 30% theory, based on the code created that will help the
reader to apply the exposed patterns to new software.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We know that the input parameter is a PaymentRequest instance."

Preface

[ix]

A block of code is set as follows:

public interface PaymentService {
 PaymentResponse processPayment(PaymentRequest request) throws
 MyBusinessException;
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

function() {
 sinon.stub(Math, "random");
 rollDice();
 console.log(Math.random.calledWith());
});
after(function(){
 Math.random.restore();
});

Any command-line input or output is written as follows:

node index.js

npm start

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In this
case, I have used Chrome and the console shows an Uncaught TypeError: Cannot
set property 'innerText' of null error in line 7."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[x]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Microservices Architecture
Microservices are becoming more and more popular. Nowadays, pretty much
every engineer on a green field project should be considering using microservices
in order to improve the quality of the systems they build. They should know the
architectural principles involving such systems. We will expose the difference
between microservices and Service-Oriented Architecture (SOA). We will also
introduce a great platform to write microservices, Node.js, which will allow us to
create high-performing microservices with very little effort.

In this chapter, you will learn about microservices from the architectural point
of view:

• What are microservices?
• Microservice-oriented architectures
• Key benefits
• SOA versus Microservices
• Why Node.js?

Need for microservices
The world of software development has evolved quickly in the past 40 years. One of
the key points of this evolution has been the size of these systems. From the days of
MS-DOS, we have taken a hundred-fold leap into our present systems. This growth
in size creates a need for better ways of organizing code and software components.
Usually, when a company grows due to business needs, known as organic growth,
the software is organized on a monolithic architecture as it is the easiest and quickest
way of building software. After few years (or even months), adding new features
becomes harder due to the coupled nature of the created software.

Microservices Architecture

[2]

Monolithic software
The natural trend for new high-tech companies such as Amazon or Netflix is building
their new software using microservices, which is the ideal scenario: they get a huge
advantage of microservices-oriented software (through out this book, you will learn
how) in order to scale up their new products without a big effort. The problem is
that not all companies can plan their software upfront. Instead of planning, these
companies build software based on the organic growth experienced: few software
components group business flows by affinity. It is not rare to see companies with two
big software components: the user-facing website and the internal administration
tools. This is usually known as a monolithic software architecture.

Some of these companies face big problems when trying to scale the engineering
teams. It is hard to coordinate teams that build, deploy, and maintain a single
software component. Clashes on releases and reintroduction of bugs are a common
problem that drains a large chunk of energy from the teams. One of the solution
to this problem (it comes with benefits) is to split the monolithic software into
microservices so that the teams are able to specialize in a few smaller modules and
autonomous and isolated software components that can be versioned, updated, and
deployed without interfering with the rest of the systems of the company.

Splitting the monolith into microservices enables the engineering team to create
isolated and autonomous units of work that are highly specialized in a given task
such as sending e-mails, processing card payments, and so on.

Microservices in the real world
Microservices are small software components that are specialized in one task and
work together to achieve a higher-level task. Forget about software for a second and
think about how a company works. When someone applies for a job in a company,
he applies for a given position: software engineer, system administrator, office
manager. The reason for this can be summarized in one word: specialization. If you
are used to work as a software engineer, you will get better with the experience and
add more value to the company. The fact that you don't know how to deal with a
customer, won't affect your performance as that is not your area of expertise and will
hardly add any value to your day-to-day work.

Specialization is often the key to improve the efficiency.
Doing one thing and doing it right is one of the
mantras of software development.

Chapter 1

[3]

A microservice is an autonomous unit of work that can execute one task without
interfering with other parts of the system, similar to what a job position is to a
company. This has a number of benefits that can be used in favor of the engineering
team in order to help scale the systems of a company.

Nowadays, hundreds of systems are built using microservices-oriented architectures,
as follows:

• Netflix: This is one of the most popular streaming services, it has built an
entire ecosystem of applications that collaborate in order to provide a reliable
and scalable streaming system used across the globe.

• Spotify: This is one of the leading music streaming services in the world,
it has built this application using microservices. Every single widget of the
application (which is a website exposed as a desktop app using Chromium
Embedded Framework) is a different microservice that can be updated
individually.

Microservice-oriented architectures
Microservices-oriented architectures have some particularities that makes them
desirable for any mid/large-sized company that wants to keep their IT systems
resilient and in scale up/down-ready status.

How is it better?
They are not the holy grail of software engineering, but, when handled with care,
they become the perfect approach to solve most of the big problems faced by
tech-dependent companies.

It is important to keep the key principles of the microservices-oriented architecture's
design in mind, such as resilience, composability, elasticity, and so on; otherwise,
you could end up with a monolithic application split across different machines that
produces problems rather than an elegant solution.

Shortcomings
There is also some criticism around microservices-oriented architectures, as
they introduce some problems to deal with, such as latency, traceability, and
configuration management that are not present with monolithic-based software.
Some of the problems are described as follows:

• Network latency: Microservices have a distributed nature so that network
latency has to be accounted for

Microservices Architecture

[4]

• Operations overhead: More servers indicate more maintenance
• Eventual consistency: On highly transactional systems, we need to factor

into implementation the fact that the data could be inconsistent during a
period of time (we will talk about it later in this chapter)

In general, engineers should try to evaluate the pros and cons of this approach
and make a decision on whether to use microservices or not in order to fit the
business needs.

Microservices-oriented architectures have some particularities that need to be taken
into consideration. When a software engineer is writing monolithic software, there
are some problems that are completely overlooked due to the nature of the software
being built.

For example, imagine that our software needs to send e-mails. In a monolithic
software, we would just add the functionality to the core of the application. We
might even choose to create a dedicated module to deal with e-mails (which seems
like a good idea). Now, imagine that we are creating a microservice and, instead of
adding a functionality to a big software artifact, we create a dedicated service that
can be deployed and versioned independently. In this case, we will have an extra
step that we didn't have to take into consideration, the network latency, to reach the
new microservice.

In the preceding example, no matter what approach (monolithic or microservices)
you are taking to build the software, is not a big deal; for example, if an e-mail is lost,
it is not the end of the world. As per definition, the e-mail delivery is not guaranteed,
so our application will still work, although we might receive a few complaints from
our customers.

Key design principles
There are a few key design principles that need to be taken into consideration when
building microservices. There is no golden rule and, as microservices are a recent
concept, sometimes there is even a lack of consensus on what practices to follow.
In general, we can assume the following design principles:

• Microservices are business units that model the company processes.
• They are smart endpoints that contain the business logic and communicate

using simple channels and protocols.
• Microservices-oriented architectures are decentralized by definition. This

helps to build robust and resilient software.

Chapter 1

[5]

Business units, no components
One of the most enjoyable sides of software engineering is creating a new project.
This is where you can apply all your creativity, try new architectural concepts,
frameworks, or methodologies. Unfortunately, it is not a common situation in a
mature company. Usually, what we do is create new components inside the existing
software. One of the best design principles that you can follow when creating new
components is keeping the coupling as low as possible with the rest of the software,
so that it works as an independent unit.

Keeping a low level of coupling allows a software component
to be converted into a microservice with little to no effort.

Consider a real-world example: the application of your company now needs to be
able to process payments.

The logical decision here would be creating a new module that knows how to deal
with the chosen payment provider (credit cards, PayPal, and so on) and allows us to
keep all the payment-related business logic inside of it. Let's define the interface in
the following code:

public interface PaymentService {
 PaymentResponse processPayment(PaymentRequest request) throws
 MyBusinessException;
}

This simple interface can be understood by everyone, but it is the key when moving
towards microservices. We have encapsulated all the business knowledge behind
an interface so that we could theoretically switch the payment provider without
affecting the rest of the application—the implementation details are hidden from the
outer world.

The following is what we know until now:

• We know the method name, therefore, we know how to invoke the service
• The method could throw an exception of the MyBusinessException type,

forcing the calling code to deal with it
• We know that the input parameter is a PaymentRequest instance
• The response is a known object

Microservices Architecture

[6]

We have created a highly cohesive and loosely coupled business unit. Let's justify
this affirmation in the following:

• Highly cohesive: All the code inside the payments module will do only one
thing, that is, deal with payments and all the aspects of calling a third-party
service (connection handling, response codes, and so on), such as a debit
card processor.

• Loosely coupled: What happens if, for some reason, we need to switch
to a new payment processor? Is there any information bleeding out of the
interface? Would we need to change the calling code due to changes in the
contract? The answer is no. The implementation of the payment service
interface will always be a modular unit of work.

The following diagram shows how a system composed of many components gets
one of them (payment service) stripped out into a microservice:

Chapter 1

[7]

Once this module is implemented, we will be able to process the payments and
our monolithic application will have another functionality that could be a good
candidate to extract into a microservice.

Now, we can rollout new versions of the payment service, as long as the interface
does not change, as well as the contract with the rest of the world (our system
or third parties), hasn't changed. That is why it is so important to keep the
implementation independent from interfacing, even though the language does not
provide support for interfaces.

We can also scale up and deploy as many payment services as we require so that
we can satisfy the business needs without unnecessarily scaling the rest of the
application that might not be under pressure.

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail address
and password.

• Hover the mouse pointer on the SUPPORT tab at the top.
• Click on Code Downloads & Errata.
• Enter the name of the book in the Search box.
• Select the book for which you're looking to download the code

files.
• Choose from the drop-down menu where you purchased this

book from.
• Click on Code Download.

You can also download the code files by clicking on the Code Files
button on the book's webpage at the Packt Publishing website. This
page can be accessed by entering the book's name in the Search box.
Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support

Microservices Architecture

[8]

Smart services, dumb communication pipes
Hyper Text Transfer Protocol (HTTP) is one of the best things to have ever
happened to the Internet. Imagine a protocol that was designed to be state-less, but
was hacked through the use of cookies in order to hold the status of the client. This
was during the age of Web 1.0, when no one was talking about REST APIs or mobile
apps. Let's see an example of an HTTP request:

As you can see, it is a human readable protocol that does not need to be explained in
order to be understood.

Nowadays, it is broadly understood that HTTP is not confined to be used in the Web,
and as it was designed, it is now used as a general purpose protocol to transfer data
from one endpoint to another. HTTP is all you need for the communication between
microservices: a protocol to transfer data and recover from transmission errors
(when possible).

In the past few years, especially within the enterprise world, there has been an effort
to create smart communication mechanisms such as BPEL. BPEL stands for Business
Process Execution Language, and instead of focusing on communication actions, it
focuses on actions around business steps.

This introduces some level of complexity in the communication protocol and makes
the business logic of the application bleed into it from the endpoints, causing some
level of coupling between the endpoints.

Chapter 1

[9]

The business logic should stay within the endpoints and not bleed into the
communication channel so that the system can be easily tested and scaled. The
lesson learned through the years is that the communication layer must be a plain
and simple protocol that ensures the transmission of the data and the endpoints
(microservices).These endpoints should embed into their implementation the fact
that a service could be down for a period of time (this is called resilience, we will talk
about this later in this chapter) or the network could cause communication issues.

HTTP usually is the most used protocol when building microservices-oriented
software but another interesting option that needs to be explored is the use of queues,
such as Rabbit MQ and Kafka, to facilitate the communication between endpoints.

The queueing technology provides a clean approach to manage the communication
in a buffered way, encapsulating the complexities of acknowledging messages on
highly transactional systems.

Decentralization
One of the major cons of monolithic applications is the centralization of everything
on a single (or few) software components and databases. This, more often than not,
leads to huge data stores that needs to be replicated and scaled according to the
needs of the company and centralized governance of the flows.

Microservices aim for decentralization. Instead of having a huge database, why not
split the data according to the business units explained earlier?

Some of the readers could use the transactionality as one of the main reasons for not
doing it. Consider the following scenario:

1. A customer buys an item in our microservices-oriented online shop.
2. When paying for the item, the system issues the following calls:

1. A call to the financial system of the company to create a transaction
with the payment.

2. A call to the warehouse system to dispatch the book.
3. A call to the mailing system to subscribe the customer to the

newsletter.

Microservices Architecture

[10]

In a monolithic software, all the calls would be wrapped in a transaction, so if, for
some reason, any of the calls fails, the data on the other calls won't be persisted
in the database.

When you learn about designing databases, one of the first and the most important
principles are summarized by the ACID acronym:

• Atomicity: Each transaction will be all or nothing. If one part fails, no
changes are persisted on the database.

• Consistency: Changes to the data through transactions need to guarantee its
consistency.

• Isolation: The result of concurrent execution of transactions results in a
system state that would be obtained if the transactions were executed serially.

• Durability: Once the transaction is committed, the data persists.

On a microservices-oriented software, the ACID principle is not guaranteed globally.
Microservices will commit the transaction locally, but there are no mechanisms that
can guarantee a 100% integrity of the global transaction. It would be possible to
dispatch the book without processing the payment, unless we factor in specific rules
to prevent it.

On a microservices-oriented architecture, the transactionality of the data is not
guaranteed, so we need to factor the failure into the implementation. A way to solve
(although, workaround is a more appropriate word) this problem is decentralizing
the governance and data storage.

When building microservices, we need to embed in the design, the fact that one
or more components could fail and degrade the functionality according to the
availability of the software.

Chapter 1

[11]

Let's take a look at the following diagram:

This diagram represents the sequence of execution on a monolithic software. A
sequential list of calls that, no matter what, are going to be executed following the
ACID principle: either all the calls (transactions) succeed or none of them do.

This is only possible as the framework and database engine designers have
developed the concept of transactions to guarantee the transactionality of the data.

When working with microservices, we need to account for what the engineers
call eventual consistency. After a partial fail on a transaction, each microservice
instance should store the information required to recover the transaction so that the
information will be eventually consistent. Following the previous example, if we send
the book without processing the payment, the payment gateway will have a failed
transaction that someone will process later on, making the data consistent again.

The best way to solve this problem is decentralizing the governance. Every endpoint
should be able to take a local decision that affects the global scope of the transaction.
We will talk more about this subject in Chapter 3, From the Monolith to Microservices.

Microservices Architecture

[12]

Technology alignment
When building a new software, there is always a concept that every developer
should keep in mind: standards.

Standards guarantee that your service will be technologically independent so that
it will be easy to build the integrations using a different programming language
or technologies.

One of the advantages of modeling a system with microservices is that we can
choose the right technology for the right job so that we can be quite efficient when
tackling problems. When building monolithic software, it is fairly hard to combine
technologies like we can do with microservices. Usually, in a monolithic software,
we are tied to the technology that we choose in the beginning.

Java Remote Method Invocation (RMI) is one example of the non-standard protocols
that should be avoided if you want your system to be open to new technologies. It is
a great way of connecting software components written in Java, but the developers
will struggle (if not fail) to invoke an RMI method using Node.js. This will tie our
architecture to a given language, which from the microservices point of view, will kill
one of the most interesting advantages: technology heterogeneity.

How small is too small?
Once we have decided to model our system as a set of microservices, there is always
one question that needs an answer: how small is too small?

The answer is always tricky and probably disappointing: it depends.

The right size of the microservices in a given system depends on the structure of
the company as well as the ability to create software components that are easily
manageable by a small team of developers. It also depends on the technical needs.

Imagine a system that receives and processes banking files; as you are probably
aware, all the payments between banks are sent in files with a specific known
format (such as Single Euro Payments Area (SEPA) for Euro payments). One of the
particularities of this type of systems is the large number of different files that the
system needs to know how to process.

The first approach for this problem is tackling it from the microservices point of
view, separating it from any other service creating a unit of work, and creating one
microservice for each type of file. It will enable us to be able to rollout modifications
for the existing file processors without interfering with the rest of the system.
It will also enable us to keep processing files even though one of the services is
experiencing problems.

Chapter 1

[13]

The microservices should be as small as needed, but keep in mind that every
microservice adds an overhead to the operations team that needs to manage a new
service. Try to answer the question how small is too small? in terms of manageability,
scalability, and specialization. The microservice should be small enough to be
managed and scaled up (or down) quickly without affecting the rest of the system,
by a single person; and it should do only one thing.

As a general rule, a microservice should be small
enough to be completely rewritten in a sprint.

Key benefits
In the previous topic, we talked about what a microservices-oriented architecture is.
I also exposed the design principles that I have learned from experience, as well as
showed a few benefits of this type of architecture.

Now, it is time to outline these key benefits and show how they will help us to
improve the quality of our software, as well as be able to quickly accommodate the
new business requirements.

Resilience
Resilience is defined in Wikipedia as the ability of a system to cope with change. I like
to think about resilience as the ability of a system to gracefully recover from an exception
(transitory hardware failure, unexpectedly high network latency, and so on) or a
stress period without affecting the performance of the system once the situation has
been resolved.

Although it sounds simple, when building microservices-oriented software, the
source of problems broadens due to the distributed nature of the system, sometimes
making it hard (or even impossible) to prevent all abnormal situations.

Resilience is the ability to gracefully recover from errors. It also adds another level of
complexity: if one microservice is experiencing problems, can we prevent a general
failure? Ideally, we should build our system in a way that the service response is
degraded instead of resulting in a general failure, although this is not always easy.

Microservices Architecture

[14]

Scalability
Nowadays, one of the common problems in companies is the scalability of the
systems. If you have worked on a monolithic software before, I am sure that you have
experienced capacity problems at some point, alongside the growth of the company.

Usually, these problems are not across all the layers or subsystems of the application.
There is always a subsystem or service that performs significantly slower than the
rest, causing the entire application to fail if it is not able to cope with the demand.

The following diagram describes how a microservice can be scaled up (two mailing
services) without interfering with the rest of the system:

Chapter 1

[15]

An example of these weak points in the world of car insurance is the
service that calculates the quote for a given list of risk factors. Would it
make sense to scale the full application just to satisfy the demand for this
particular part? If the answer that you have in mind is no, you are one
step closer to embracing microservices. Microservices enable you to scale
parts of the system as the demand ramps up for a particular area of it.

If our insurance system was a microservice-oriented software, the only thing needed
to resolve the high demand for quote calculations would've been to spawn more
instances of the microservice (or microservices) responsible for their calculation. Please
bear in mind that scaling up services could add an overhead for operating them.

Technology heterogeneity
The world of software is changing every few months. New languages are coming
to the industry as a de facto standard for a certain type of systems. A few years
ago, Ruby on Rails appeared at the scene and rose as one of the most used web
frameworks for new projects in 2013. Golang (a language created by Google) is
becoming a trend nowadays as it combines huge performance with an elegant
and simple syntax that can be learned by anyone with some experience in another
programming language in a matter of days.

In the past, I have used Python and Java as successful alternatives to write
microservices.

Java especially, since Spring Boot was released, is an attractive technology stack to
write agile (to write and operate) microservices.

Django, is also a powerful framework on Python to write microservices. Being very
similar to Ruby on Rails, it automates database migrations and makes the creation of
CRUD (Create Read Update Delete) services an incredibly easy task.

Node.js took the advantage of a well-known language, JavaScript, to create a new
server-side stack that is changing the way engineers create new software.

So, what is wrong in combining all of them? In all fairness, it is an advantage: we can

choose the right tool for the right job.

Microservices-oriented architectures enable you to do it, as long as the integration
technologies are standard. As you learned before, a microservice is a small and

independent piece of software that can operate by itself.

Microservices Architecture

[16]

The following diagram shows how the microservices hide data storage/gathering,
having only the communication points in common—making them a good example
of low coupling (one service implementation change won't interfere with any other
service):

We have talked about performance earlier. There are always parts of our systems
that are under more pressure than others. With modern multicore CPUs, parallel
(concurrent) programming could solve some of these performance issues, however,
Node.js is not a good language to parallelize tasks. We could choose to rewrite the
microservice under pressure using a more appropriate language, such as Erlang, to
manage concurrency in a more elegant way. It should take no more than two weeks
to do it.

Chapter 1

[17]

There is a downside to using multiple technologies on the same system: the
developers and system administrators need to know all (or a few) of them.
Companies that embraced microservices usually try to stick with one core technology
(in this book, we will be using Node.js) and some auxiliary technologies (although
we will be using Docker to manage the deployments, we could use Capistrano or
Fabricator to manage the releases).

Replaceability
Replaceability is the ability to change one component of a system without interfering
with how the system behaves.

When talking about software, replaceability comes along with low coupling. We
should be writing our microservices in a way that the internal logic will not be
exposed to the calling services so that the clients of a given service do not need
to know about how it is implemented, just the interface. Let's take a look at the
following example. It is written in Java as we only need to see the interface to
identify the pitfalls:

public interface GeoIpService {
 /**
 * Checks if an IP is in the country given by an ISO code.
 **/
 boolean isIn(String ip, String isoCode) throws
 SOAPFaultException;
}

This interface, at first look, is self explanatory. It checks whether a given IP is in a
given country and throws a SOAPFaultException, which is a big problem.

If we build the client that consumes this service, factoring into their logic,
capture, and processing of the SoapFaultException, we are exposing internal
implementation details to the outer world and making it hard to replace the
GeoIpService interface. Also, the fact that we are creating a service related to a part
of our application logic is an indication of the creation of a bounded context: a highly
cohesive service or set of services that work together to achieve one purpose.

Microservices Architecture

[18]

Independence
No matter how hard we try, the human brain is not designed to solve complex
problems. The most efficient mode of functioning for the human brain is
one thing at the time so that we break down complex problems into smaller ones.
Microservices-oriented architectures should follow this approach: all the services
should be independent and interact through the interface up to a point that they can
be developed by different groups of engineers without any interaction, aside from
agreeing the interfaces. This will enable a company adopting microservices to scale
up, or down, the engineering teams, depending on the business needs, making the
business agile in responding to peaks of demand or periods of quietness.

Why is replaceability important?
In a previous section, we talked about the right size of a microservice. As a general
rule of thumb, a team should be able to rewrite and deploy a microservice in a sprint.
The reason behind it is the technical debt.

I would define technical debt as the deviation from the original technical design
to deliver the expected functionality within a planned deadline. Some of these
sacrifices or wrong assumptions often lead to poorly written software that needs to
be completely refactored or rewritten.

In the preceding example, the interface is exposing to the outer world the fact that
we are using SOAP to call a web service, but we will need to change the code on the
client side as a REST client has certainly nothing to do with SOAP exceptions.

Easy to deploy
Microservices should be easy to deploy.

Being software developers, we are well aware that a lot of things could go wrong,
preventing a software from being deployed.

Microservices, as stated before, should be easy to deploy for a number of reasons, as
stated in the following list:

• Small amount of business logic (remember the two weeks re-write from scratch
rule of thumb) leading into simpler deployments.

• Microservices are autonomous units of work, so upgrading a service is a
contained problem on a complex system. No need to re-deploy the entire
system.

Chapter 1

[19]

• Infrastructure and configuration on microservices architectures should be
automated as much as possible. Later in the book, we will learn how to use
Docker to deploy microservices and what are the benefits over the traditional
deployment techniques are.

SOA versus microservices
Service-Oriented Architectures (SOA) has been around for a number of years. SOA
is a great principle to design software. They are self-contained components providing
services to other components. As we agreed before, it is all about maintaining low
coupling on the different modules of the system as if it was a puzzle so that we can
replace the pieces without causing a big impact on the overall system.

In principle, SOA looks very similar to microservices architectures. So what is
the difference?

Microservices are fine-grained SOA components. In other words, a single SOA
component can be decomposed in a number of microservices that can work together
in order to provide the same level of functionality:

Microservices Architecture

[20]

Microservices are fine-grained SOA components.
They are lightweight services with a narrow focus.

Another difference between microservices and SOA is the technologies used for
interconnecting and writing the services.

J2EE is a technology stack that was designed to write SOA architectures as it
enforced enterprise standards. Java Naming and Directory Interface, Enterprise
Java Beans, and Enterprise Service Bus (ESB) were the ecosystems where SOA
applications were built and maintained. Although ESB is a standard, very few
engineers who graduated after 2005 have heard about ESB, even fewer have used it,
and nowadays the modern frameworks such as Ruby on Rails do not even consider
such complex pieces of software.

On the other hand, microservices enforce the use of standards (such as HTTP) that
are broadly known and broadly interoperable. We can choose the right language or
tool to build a component (microservice) following one of the key benefits explained
earlier in this chapter, in the Technology heterogeneity section.

Aside from the technology stack and the size of the services, there is an even bigger
difference between SOA and microservices: the domain model. Earlier in this
chapter, we have talked about decentralization. Decentralization of the governance,
but, moreover, decentralization of the data. In a microservices-based software, every
microservice should store its own data locally, isolating the domain models to a
single service; whereas, on an SOA oriented-software, the data is usually stored in a
few big databases and the services share the domain models.

Why Node.js?
A few years ago, I didn't believe in Node.js. To me, it was a trend more than a
real tool to solve problems… JavaScript in the server? That didn't look right. In all
fairness, I didn't even like JavaScript. Then, the modern frameworks such as jQuery
or Angular.js came to the rescue. They solved one of the problems, which was the
cross-browser compatibility. Where before we needed to factor in at least three
different browsers, after jQuery all this logic was nicely encapsulated in a library
so that we didn't need to worry about compatibility as long as we followed the
jQuery documentation.

Then, JavaScript became more popular. Suddenly, all the internal tools were written
with Single-Page Application (SPA) frameworks with a heavy usage of JavaScript,
therefore, the majority of developers nowadays, one way or another, are proficient
in JavaScript.

Chapter 1

[21]

Then, someone decided to take JavaScript out of the browser, which was a great
idea. Rhino, Node.js, and Nashorn are examples of runtimes that can execute
standalone JavaScript. Some of them can even interact with the Java code, enabling
the developer to import Java classes into a JavaScript program, which gives you the
access to an endless set of frameworks already written in Java.

Let's focus on Node.js. Node.js is the perfect candidate for microservices-oriented
architectures for a number of reasons, as stated in the following list:

• Easy to learn (although it can be hard to master)
• Easy to scale
• Highly testable
• Easy to deploy
• Dependency management through npm
• There are hundreds of libraries to integrate with the majority of standard

protocols

These reasons, along with others that we will develop in the following chapters,
make Node.js the perfect candidate for building solid microservices.

API aggregation
Seneca is the framework that I have chosen for development in the following
chapters. One of the most attractive characteristics of Seneca is API aggregation.

API aggregation is an advanced technique to compose an interface by aggregating
different functionalities (plugins, methods, and so on) to it.

Let's take a look at the following example:

var express = require('express');
var app = express();

app.get('/sayhello', function (req, res) {
 res.send('Hello World!');
});
app.get('/saygoodbye', function(req, res) {
 res.send('Bye bye!');
});

var server = app.listen(3000, function () {
 var host = server.address().address;
 var port = server.address().port;
 console.log('App listening at http://%s:%s', host, port);
});

Microservices Architecture

[22]

The preceding example uses Express, a very popular web framework for Node.js.
This framework is also built around the API aggregation technique. Let's take a look
at the fourth and seventh lines. In these lines, the developer registers two methods
that are to be executed when someone hits the URLs /sayhello and /saygoodbye
with a GET request. In other words, the application is composed of different smaller
and independent implementations that are exposed to the outer world on a single
interface, in this case, an app listening on the 3000 port.

In the following chapters, I will explain why this property is important and how to
take advantage of it when building (and scaling) microservices.

The future of Node.js
JavaScript was first designed to be a language executed in the web browser. For
those who worked or studied, using C/C++ was very familiar and that was the key
for its adoption as a standard for the dynamic manipulation of documents in Web
2.0. Asynchronous JavaScript and XML (AJAX) was the detonator for JavaScript
growth. Different browsers had different implementations of the request objects so
that the developers had a hard time to write a cross-browser code.

The lack of standards led to the creation of many frameworks that encapsulated the
logic behind AJAX, making easy-to-write cross-browser scripts.

JavaScript is a script language. It was not designed to be object oriented, neither was
it designed to be the language of choice for large applications as the code tends to
get chaotic and it is hard to enforce standards across different companies on how
the code should be laid out. Every single company where I worked has different best

practices and some of them are even contradictory.

European Computer Manufacturers Association (ECMA) came to the rescue.
ECMAScript 6, the next standard for ECMA languages (JavaScript, ActionScript,
Rhino, and so on) introduces the concept of classes, inheritance, collections, and a
number of interesting features that will make the development of JavaScript software
easier and more standard than the actual V8 specification.

One of these features that I consider more interesting is the introduction of the class
keyword that allows us to model our JavaScript software with objects.

At the moment, the majority of browsers support a large number of these features, but
when it comes to Node.js, only a few of them are implemented by default and some of
them are implemented by passing special flags to the interpreter (harmony flags).

In this book, I will try to avoid the ECMAScript 6 features, sticking to the V8
specification as it is widely known by the majority of developers and, once someone
knows JavaScript V8, it is fairly easy to ramp up on ECMAScript 6.

Chapter 1

[23]

Summary
In this chapter, we studied the key concepts around microservices, as well as the best
practices to be followed when designing high-quality software components towards
building robust and resilient software architectures that enable us to respond quickly
to the business needs.

You have also learned the key benefits such as the possibility of using the right
language for the right service (technology heterogeneity) on the microservices-oriented
architectures as well as some of the pitfalls that could make our life harder, such as
the overhead on the operational side caused by the distributed nature of the
microservices-oriented architectures.

Finally, we discussed why Node.js is a great tool for building microservices, as well
as how we could benefit from JavaScript to build high-quality software components
through techniques like API aggregation.

In the following chapters, we will be developing the concepts discussed in this
chapter, with code examples and further explanation about the topics I have
learned over the years.

As explained before, we will focus on the V8 version of JavaScript, but I will
provide some hints on how to easily write upgradeable components to embrace
ECMAScript 6.

[25]

Microservices in

Node.js – Seneca and
PM2 Alternatives

In this chapter, you will mainly learn about two frameworks, Seneca and PM2, and
why they are important for building microservices. We will also get to know the
alternatives to these frameworks in order to get a general understanding of what
is going on in the Node.js ecosystem. In this chapter, we are going to focus on the
following topics:

• Need for Node.js: In this section, we are going to justify the choice of Node.
js as a framework to build our microservices-oriented software. We will walk
through the software stack required to use this awesome technology.

• Seneca – a microservices framework: In this section, you will learn the basics
of Seneca and why it is the right choice if we want to keep our software
manageable. We will explain how to integrate Seneca with Express (the most
popular web server in Node.js) in order to follow the industry standards.

• PM2: PM2 is the best choice to run Node.js applications. No matter what
your problem in deploying your ecosystem of apps is, PM2 will always have
a solution for it.

Need for Node.js
In the previous chapter, I mentioned that I wasn't a big fan of Node.js in the past. The
reason for this was that I wasn't prepared to cope with the level of standardization
that JavaScript was undergoing.

Microservices in Node.js – Seneca and PM2 Alternatives

[26]

JavaScript in the browser was painful. Cross-browser compatibility was always a
problem and the lack of standardization didn't help to ease the pain.

Then Node.js came and it was easy to create highly scalable applications due to its
non-blocking nature (we will talk about it later in this chapter) and it was also very
easy to learn as it was based on JavaScript, a well-known language.

Nowadays, Node.js is the preferred choice for a large number of companies across
the world, as well as the number one choice for aspects that require a non-blocking
nature in the server, such as web sockets.

In this book, we will primarily (but not only) use Seneca and PM2 as the frameworks
for building and running microservices, but it does not mean that the alternatives are
not good.

There are few alternatives in the market such as restify or Express for building
applications and forever or nodemon to run them. However, I find Seneca and
PM2 to be the most appropriate combination for building microservices for the
following reasons:

• PM2 is extremely powerful regarding application deployments
• Seneca is not only a framework to build microservices, but it is also a

paradigm that reshapes what we know about object-oriented software

We will be using Express in a few examples in the chapters of this book and we will
also discuss how to integrate Seneca in Express as a middleware.

However, before that, let's discuss some concepts around Node.js that will help us to
understand those frameworks.

Installing Node.js, npm, Seneca, and PM2
Node.js is fairly easy to install. Depending on your system, there is an installer
available that makes the installation of Node.js and npm (Node Package Manager) a
fairly simple task. Simply double-click on it and follow the instructions. At the time
of writing this book, there are installers available for Windows and OSX.

However, the advanced users, especially DevOps engineers, will need to install
Node.js and npm from the sources or binaries.

Chapter 2

[27]

Both Node.js and npm programs come bundled together in a single
package that we can download for various platforms from the Node.js
website (either sources or binaries):
https://nodejs.org/en/download/

For the Chef users, a popular configuration management software to build servers,
there are few options available, but the most popular is the following recipe (for
those unfamiliar with Chef, a recipe is basically a script to install or configure
software in a server through Chef):

https://github.com/redguide/nodejs

At the time of writing this book, there are binaries available for Linux.

Learning npm
npm is a software that comes with Node.js and enables you to pull dependencies
from the Internet without worrying about their management. It can also be used to
maintain and update dependencies, as well as create projects from scratch.

As you probably know, every node app comes with a package.json file. This
file describes the configuration of the project (dependencies, versions, common
commands, and so on). Let's see the following example:

{
 "name": "test-project",
 "version": "1.0.0",
 "description": "test project",
 "main": "index.js",
 "scripts": {
 "test": "grunt validate --verbose"
 },
 "author": "David Gonzalez",
 "license": "ISC"
}

The file itself is self-explanatory. There is an interesting section in the file—scripts.

In this section, we can specify the command that is used to run for different
actions. In this case, if we run npm test from the terminal, npm will execute grunt
validate --verbose.

Node applications are usually as easy to run as executing the following command:

node index.js

https://nodejs.org/en/download/
https://github.com/redguide/nodejs

Microservices in Node.js – Seneca and PM2 Alternatives

[28]

In the root of your project, consider that the bootstrapping file is index.js. If this is
not the case, the best thing you can do is add a subsection in the scripts section in
package.json, as follows:

"scripts": {
 "test": "grunt validate --verbose"
 "start": "node index.js"
},

As you can see, now we have two commands executing the same program:

node index.js

npm start

The benefits of using npm start are quite obvious—uniformity. No matter how
complex your application is, npm start will always run it (if you have configured
the scripts section correctly).

Let's install Seneca and PM2 on a clean project.

First, execute npm init in a new folder from the terminal after installing Node.js.
You should get a prompt similar to the following image:

npm will ask you for a few parameters to configure your project, and once you are
done, it writes a package.json file with content similar to the preceding code.

Now we need to install the dependencies; npm will do that for us. Just run the
following command:

npm install --save seneca

Chapter 2

[29]

Now, if you inspect package.json again, you can see that there is a new section
called dependencies that contains an entry for Seneca:

"dependencies": {
 "seneca": "^0.7.1"
}

This means that from now on, our app can require the Seneca module and the
require() function will be able to find it. There are a few variations of the save flag,
as follows:

• save: This saves the dependency in the dependencies section. It is available
through all the development life cycle.

• save-dev: This saves the dependency in the devDependencies section. It is
only available in development and does not get deployed into production.

• save-optional: This adds a dependency (such as save), but lets npm
continue if the dependency can't be found. It is up to the app to handle
the lack of this dependency.

Let's continue with PM2. Although it can be used as a library, PM2 is mainly a
command tool, like ls or grep in any Unix system. npm does a great job installing
command-line tools:

npm install –g pm2

The –g flags instruct npm to globally install PM2, so it is available in the system, not
in the app. This means that when the previous command finishes, pm2 is available
as a command in the console. If you run pm2 help in a terminal, you can see the
help of PM2.

Our first program – Hello World
One of the most interesting concepts around Node.js is simplicity. You can learn
Node.js in few days and master it in a few weeks, as long as you are familiar with
JavaScript. Code in Node.js tends to be shorter and clearer than in other languages:

var http = require('http');

var server = http.createServer(function (request, response) {
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.end("Hello World\n");
});

server.listen(8000);

Microservices in Node.js – Seneca and PM2 Alternatives

[30]

The preceding code creates a server that listens on the 8000 port for requests. If you
don't believe it, open a browser and type http://127.0.0.1:8000 in the navigation
bar, as shown in the following screenshot:

Let's explain the code:

• The first line loads the http module. Through the require() instruction, we
ask the node to load the http module and assign the export of this module to
the http variable. Exporting language elements is the way that Node.js has to
expose functions and variables to the outer world from inside a module.

• The second construction in the script creates the HTTP server. The http
module creates and exposes a method called createServer() that receives
a function (remember JavaScript treats functions as first-level objects so that
they can be passed as other functions arguments) as a parameter that, in
the Node.js world, is called callback. A callback is an action to be executed
as a response to an event. In this case, the event is that the script receives
an HTTP request. Node.js has a heavy usage of callbacks due to its thread
model. Your application will always be executed on a single thread so that
not blocking the application thread while waiting for operations to complete
and prevents our application from looking stalled or hanged. Otherwise,
your program won't be responsive. We'll come back to this in Chapter 4,
Writing Your First Microservice in Node.js.

• In the next line, server.listen(8000) starts the server. From now on, every
time our server receives a request, the callback on the http.createServer()
function will be executed.

Chapter 2

[31]

This is it. Simplicity is the key to Node.js programs. The code allows you to go to the
point without writing tons of classes, methods, and config objects that complicate what,
in the first instance, can be done much more simply: write a script that serves requests.

Node.js threading model
Programs written in Node.js are single-threaded. The impact of this is quite
significant; in the previous example, if we have ten thousand concurrent requests,
they will be queued and satisfied by the Node.js event loop (it will be further
explained in Chapter 4, Writing Your First Microservice in Node.js and Chapter 6,
Testing and Documenting Node.js Microservices) one by one.

At first glance, this sounds wrong. I mean, the modern CPUs can handle multiple
parallel requests due to their multicore nature. So, what is the benefit of executing
them in one thread?

The answer to this question is that Node.js was designed to handle asynchronous
processing. This means that in the event of a slow operation such as reading a file,
instead of blocking the thread, Node.js allows the thread to continue satisfying other
events, and then the control process of the node will execute the method associated
with the event, processing the response.

Sticking to the previous example, the createServer() method accepts a callback
that will be executed in the event of an HTTP request, but meanwhile, the thread is
free to keep executing other actions.

The catch in this model is what Node.js developers call the callback hell. The code
gets complicated as every single action that is a response to a blocking action has
to be processed on a callback, like in the previous example; the function used as a
parameter to the createServer() method is a good example.

Modular organization best practices
The source code organization for big projects is always controversial. Different
developers have different approaches to how to order the source code in order to
keep the chaos away.

Some languages such as Java or C# organize the code in packages so that we can find
source code files that are related inside a package. As an example, if we are writing
a task manager software, inside the com.taskmanager.dao package we can expect
to find classes that implement the data access object (DAO) pattern in order to
access the database. In the same way, in the com.taskmanager.dao.domain.model
package, we can find all the classes that represent model objects (usually tables) in
our application.

Microservices in Node.js – Seneca and PM2 Alternatives

[32]

This is a convention in Java and C#. If you are a C# developer, and you start working
on an existing project, it only takes you a few days to get used to how the code is
structured as the language enforces the organization of the source.

Javascript
JavaScript was first designed to be run inside the browser. The code was supposed to
be embedded in HTML documents so that the Document Object Model (DOM) could
be manipulated to create dynamic effects. Take a look at the following example:

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>Title of the document</title>
</head>
<body>
 Hello Mundo
 <script type="text/javascript">
 document.getElementById("world").innerText = 'World';
 </script>
</body>
</html>

As you can see, if you load this HTML on a browser, the text inside the span tag with
the id as world is replaced when the page loads.

In JavaScript, there is no concept of dependency management. JavaScript can be
segregated from the HTML into its own file, but there is no way (for now) to include
a JavaScript file into another JavaScript file.

This leads to a big problem. When the project contains dozens of JavaScript files, the
assets management become more of an art than an engineering effort.

The order in which you import the JavaScript files becomes important as the browser
executes the JavaScript files as it finds them. Let's reorder the code in the previous
example to demonstrate it, as follows:

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>Title of the document</title>
 <script type="text/javascript">
 document.getElementById("world").innerText = 'World';
 </script>

Chapter 2

[33]

</head>
<body>
 Hello Mundo

</body>
</html>

Now, save this HTML in an index.html file and try to load it in any browser,
as shown in the following image:

In this case, I have used Chrome and the console shows an Uncaught TypeError:
Cannot set property 'innerText' of null error in line 7.

Why is that happening?

As we explained earlier, the browser executes the code as it is found, and it turns out
that when the browser executes the JavaScript, the world element does not exist yet.

Fortunately, Node.js has solved the dependency-loading problem using a very
elegant and standard approach.

SOLID design principles
When talking about microservices, we always talk about modularity, and modularity
always boils down to the following (SOLID) design principles:

• Single responsibility principle
• Open for extension, closed for modification
• Liskov substitution
• Interface segregation
• Dependency inversion (inversion of control and dependency injection)

Microservices in Node.js – Seneca and PM2 Alternatives

[34]

You want your code to be organized in modules. A module is an aggregation of
code that does something simple, such as manipulating strings, and it does it well.
The more functions (or classes, utilities, and so on) your module contains, the less
cohesive it is, and we are trying to avoid that.

In Node.js, every JavaScript file is a module by default. We can also use folders as
modules, but let's focus on files:

function contains(a, b) {
 return a.indexOf(b) > -1;
}

function stringToOrdinal(str) {
 var result = ""
 for (var i = 0, len = str.length; i < len; i++) {
 result += charToNumber(str[i]);
 }
 return result;
}

function charToNumber(char) {
 return char.charCodeAt(0) - 96;
}

module.exports = {
 contains: contains,
 stringToOrdinal: stringToOrdinal
}

The preceding code represents a valid module in Node.js. In this case, the module
contains three functions, where two of them are exposed to the outside of the module.

In Node.js, this is done through the module.exports variable. Whatever you assign
to this variable is going to be visible by the calling code so that we can simulate
private content on a module, such as the charToNumber() function in this case.

So, if we want to use this module, we just need to require() it, as follows:

var stringManipulation = require("./string-manipulation");
console.log(stringManipulation.stringToOrdinal("aabb"));

This should output 1122.

Chapter 2

[35]

Let's go back to the SOLID principles and see how our module looks:

• Single responsibility principle: Our module only deals with strings
• Open for extension, closed for modification: We can add more functions,

but the ones that we have are correct and they can be used to build new
functions in the module

• Liskov substitution: We will skip this one, as the structure of the module is
irrelevant to fulfil this principle

• Interface segregation: JavaScript is not a language that counts with an
interface element such as Java or C#, but in this module, we exposed the
interface, and the module.exports variable will act as a contract for the
calling code and the change in our implementation won't affect how the
module is being called

• Dependency inversion: Here is where we fail, not fully, but enough to
reconsider our approach

In this case, we require the module, and the only way to interact with it is through
the global scope. If, inside the module, we want to interact with data from outside,
the only possible option is to create a global variable (or function) prior to requiring
the module, and then assume that it is always going to be in there.

Global variables are a big problem in Node.js. As you are probably aware,
in JavaScript, if you omit the var keyword when declaring a variable, it is
automatically global.

This, coupled with the fact that intentional global variables create a data coupling
between modules (coupling is what we want to avoid at any cost), is the reason
to find a better approach to how to define the modules for our microservices
(or in general).

Let's restructure the code as follows:

function init(options) {

 function charToNumber(char) {
 return char.charCodeAt(0) - 96;
 }

 function StringManipulation() {
 }

 var stringManipulation = new StringManipulation();

 stringManipulation.contains = function(a, b) {

Microservices in Node.js – Seneca and PM2 Alternatives

[36]

 return a.indexOf(b) > -1;
 };

 stringManipulation.stringToOrdinal = function(str) {
 var result = ""
 for (var i = 0, len = str.length; i < len; i++) {
 result += charToNumber(str[i]);
 }
 return result;
 }
 return stringManipulation;
}

module.exports = init;

This looks a bit more complicated, but once you get used to it, the benefits are
enormous:

• We can pass configuration parameters to the module (such as debugging
information)

• Avoids the pollution of global scope as if everything is wrapped inside a
function, and we enforce the use strict configuration (this avoids declarations
without var with a compilation error)

• Parameterizing a module makes it easy to mock behaviors and data
for testing

In this book, we are going to be writing a good amount of code to model systems
from the microservices prospective. We will try to keep this pattern as much as we
can so that we can see the benefits.

One of the library that we are going to be using to build microservices, Seneca, follows
this pattern, as well as a large number of libraries that can be found on Internet.

Seneca – a microservices framework
Seneca is a framework for building microservices written by Richard Rodger, the
founder and CTO of nearForm, a consultancy that helps other companies design and
implement software using Node.js. Seneca is about simplicity, it connects services
through a sophisticated pattern-matching interface that abstracts the transport from
the code so that it is fairly easy to write highly scalable software.

Chapter 2

[37]

Let's stop talking and see some examples:

var seneca = require('seneca')()

seneca.add({role: 'math', cmd: 'sum'}, function (msg, respond) {
 var sum = msg.left + msg.right
 respond(null, {answer: sum})
})

seneca.add({role: 'math', cmd: 'product'}, function (msg, respond) {
 var product = msg.left * msg.right
 respond(null, { answer: product })
})

seneca.act({role: 'math', cmd: 'sum', left: 1, right: 2},
 console.log)
 seneca.act({role: 'math', cmd: 'product', left: 3, right: 4},
 console.log)

As you can see, the code is self-explanatory:

• Seneca comes as a module, so the first thing that needs to be done is to
require() it. Seneca package is wrapped in a function, so invoking the
function initializes the library.

• Next two instructions are related to a concept explained in Chapter 1,
Microservices Architecture: API composition. The seneca.add() method
instructs Seneca to add a function that will be invoked with a set of patterns.
For the first one, we specify an action that will take place when Seneca
receives the {role: math, cmd: sum} command. For the second one, the
pattern is {role: math, cmd: product}.

• The last line sends a command to Seneca that will be executed by the service
that matches the pattern passed as the first parameter. In this case, it will
match the first service as role and cmd match. The second call to act will
match the second service.

Write the code in a file called index.js in the project that we created earlier
in this chapter (remember that we installed Seneca and PM2), and run the
following command:

node index.js

Microservices in Node.js – Seneca and PM2 Alternatives

[38]

The output will be something similar to the following image:

We will talk about this output later in order to explain exactly what it means, but if
you are used to enterprise applications, you can almost guess what is going on.

The last two lines are the responses from the two services: the first one executes 1+2
and the second one executes 3*4.

The null output that shows up as the first word in the last two lines corresponds to a
pattern that is widely used in JavaScript: the error first callback.

Let's explain it with a code example:

var seneca = require('seneca')()

seneca.add({role: 'math', cmd: 'sum'}, function (msg, respond) {
 var sum = msg.left + msg.right
 respond(null, {answer: sum})
})

seneca.add({role: 'math', cmd: 'product'}, function (msg, respond) {
 var product = msg.left * msg.right
 respond(null, { answer: product })
})

seneca.act({role: 'math', cmd: 'sum', left: 1, right: 2},
 function(err, data) {
 if (err) {
 return console.error(err);
 }
 console.log(data);
});
seneca.act({role: 'math', cmd: 'product', left: 3, right: 4},
 console.log);

The previous code rewrites the first invocation to Seneca with a more appropriate
approach. Instead of dumping everything into the console, process the response from
Seneca, which is a callback where the first parameter is the error, if one happened
(null otherwise), and the second parameter is the data coming back from the
microservice. This is why, in the first example, null was the first output into
the console.

Chapter 2

[39]

In the world of Node.js, it is very common to use callbacks. Callbacks are a way of
indicating to the program that something has happened, without being blocked until
the result is ready to be processed. Seneca is not an exception to this. It relies heavily
on callbacks to process the response to service calls, which makes more sense when
you think about microservices being deployed in different machines (in the previous
example, everything runs in the same machine), especially because the network
latency can be something to factor into the design of your software.

Inversion of control done right
Inversion of control is a must in modern software. It comes together with the
dependency injection.

Inversion of control can be defined as a technique to delegate the creation or call of

components and methods so that your module does not need to know how to build the

dependencies, which usually, are obtained through the dependency injection.

Seneca does not really make use of the dependency injection, but it is the perfect
example of inversion of control.

Let's take a look at the following code:

var seneca = require('seneca')();
seneca.add({component: 'greeter'}, function(msg, respond) {
 respond(null, {message: 'Hello ' + msg.name});
});
seneca.act({component: 'greeter', name: 'David'}, function(error,
 response) {
 if(error) return console.log(error);
 console.log(response.message);
});

This is the most basic Seneca example. From enterprise software's point of view, we
can differentiate two components here: a producer (Seneca.add()) and a consumer
(Seneca.act()). As mentioned earlier, Seneca does not have a dependency injection
system as is, but Seneca is gracefully built around the inversion of control principle.

In the Seneca.act() function, we don't explicitly call the component that holds the
business logic; instead of that, we ask Seneca to resolve the component for us through
the use of an interface, in this case, a JSON message. This is inversion of control.

Seneca is quite flexible around it: no keywords (except for integrations) and no
mandatory fields. It just has a combination of keywords and values that are used by
a pattern matching engine called Patrun.

Microservices in Node.js – Seneca and PM2 Alternatives

[40]

Pattern matching in Seneca
Pattern matching is one of the most flexible software patterns that you can use
for microservices.

As opposed to network addresses or messages, patterns are fairly easy to extend.
Let's explain it with the help of the following example:

var seneca = require('seneca')();
seneca.add({cmd: 'wordcount'}, function(msg, respond) {
 var length = msg.phrase.split(' ').length;
 respond(null, {words: length});
});

seneca.act({cmd: 'wordcount', phrase: 'Hello world this is
 Seneca'}, function(err, response) {
 console.log(response);
});

It is a service that counts the number of words in a sentence. As we have seen before,
in the first line, we add the handler for the wordcount command, and in the second
one, we send a request to Seneca to count the number of words in a phrase.

If you execute it, you should get something similar to the following image:

By now, you should be able to understand how it works and even make some
modifications to it.

Let's extend the pattern. Now, we want to skip the short words, as follows:

var seneca = require('seneca')();

seneca.add({cmd: 'wordcount'}, function(msg, respond) {
 var length = msg.phrase.split(' ').length;
 respond(null, {words: length});
});

seneca.add({cmd: 'wordcount', skipShort: true}, function(msg,
 respond) {
 var words = msg.phrase.split(' ');
 var validWords = 0;
 for (var i = 0; i < words.length; i++) {

Chapter 2

[41]

 if (words[i].length > 3) {
 validWords++;
 }
 }
 respond(null, {words: validWords});
});

seneca.act({cmd: 'wordcount', phrase: 'Hello world this is
 Seneca'}, function(err, response) {
 console.log(response);
});

seneca.act({cmd: 'wordcount', skipShort: true, phrase: 'Hello
 world this is Seneca'}, function(err, response) {
 console.log(response);
});

As you can see, we have added another handler for the wordcount command with
an extra skipShort parameter.

This handler now skips all the words with three or fewer characters. If you execute
the preceding code, the output is similar to the following image:

The first line, {words: 5}, corresponds to the first act call. The second line, {words:
4}, corresponds to the second call.

Patrun – a pattern-matching library
Patrun is also written by Richard Rodger. It is used by Seneca in order to execute the
pattern matching and decide which service should respond to the call.

Patrun uses a closest match approach to resolve the calls. Let's see the following
example:

In the preceding image, we can see three patterns. These are equivalent to seneca.
add() from the example in the previous section.

Microservices in Node.js – Seneca and PM2 Alternatives

[42]

In this case, we are registering three different combinations of x and y variables.
Now, let's see how Patrun does the matching:

• {x: 1} ->A: This matches 100% with A
• {x: 2} ->: No match
• {x:1, y:1} -> B: 100% match with B; it also matches with A, but B is a

better match—two out of two vs one out of one
• {x:1, y:2} -> C: 100% match with C; again, it also matches with A, but C

is more concrete
• {y: 1} ->: No match

As you can see, Patrun (and Seneca) will always get the longest match. In this way,
we can easily extend the functionality of the more abstract patterns by concreting
the matching.

Reusing patterns
In the preceding example, in order to skip the words with fewer than three
characters, we don't reuse the word count function.

In this case, it is quite hard to reuse the function as is; although the problem sounds
very similar, the solution barely overlaps.

However, let's go back to the example where we add two numbers:

var seneca = require('seneca')()

seneca.add({role: 'math', cmd: 'sum'}, function (msg, respond) {
 var sum = msg.left + msg.right
 respond(null, {answer: sum})
});

seneca.add({role: 'math', cmd: 'sum', integer: true}, function
 (msg, respond) {
 this.act({role: 'math', cmd: 'sum', left: Math.floor(msg.left),
 right: Math.floor(msg.right)},respond);
});

seneca.act({role: 'math', cmd: 'sum', left: 1.5, right: 2.5},
 console.log)

seneca.act({role: 'math', cmd: 'sum', left: 1.5, right: 2.5,
 integer: true}, console.log)

As you can see, the code has changed a bit. Now, the pattern that accepts an integer
relies on the base pattern to calculate the sum of the numbers.

Chapter 2

[43]

Patrun always tries to match the closest and most concrete pattern that it can find
with the following two dimensions:

• The longest chain of matches
• The order of the patterns

It will always try to find the best fit, and if there is an ambiguity, it will match the
first pattern found.

In this way, we can rely on already-existing patterns to build new services.

Writing plugins
Plugins are an important part of applications based on Seneca. As we discussed
in Chapter 1, Microservices Architecture, the API aggregation is the perfect way of
building applications.

Node.js' most popular frameworks are built around this concept: small pieces of
software that are combined to create a bigger system.

Seneca is also built around this; Seneca.add() principle adds a new piece to the
puzzle so that the final API is a mixture of different small software pieces.

Seneca goes one step further and implements an interesting plugin system so that the
common functionality can be modularized and abstracted into reusable components.

The following example is the minimal Seneca plugin:

function minimal_plugin(options) {
 console.log(options)
}

require('seneca')()
 .use(minimal_plugin, {foo:'bar'})

Write the code into a minimal-plugin.js file and execute it:

node minimal-plugin.js

The output of this execution should be something similar to the following image:

Microservices in Node.js – Seneca and PM2 Alternatives

[44]

In Seneca, a plugin is loaded at the startup, but we don't see it as the default log level
is INFO. This means that Seneca won't show any DEBUG level info. In order to see
what Seneca is doing, we need to get more information, as follows:

node minimal-plugin.js –seneca.log.all

This produces a huge output. This is pretty much everything that is happening
inside Seneca, which can be very useful to debug complicated situations, but in
this case, what we want to do is show a list of plugins:

node minimal-plugin.js --seneca.log.all | grep plugin | grep DEFINE

It will produce something similar to the following image:

Let's analyze the preceding output:

• basic: This plugin is included with the main Seneca module and provides a
small set of basic utility action patterns.

• transport: This is the transport plugin. Up until now, we have only
executed different services (quite small and concise) on the same machine,
but what if we want to distribute them? This plugin will help us with that,
and we will see how to do so in the following sections.

• web: In Chapter 1, Microservices Architecture, we mentioned that the
microservices should advocate to keep the pipes that connect them under
a standard that is widely used. Seneca uses TCP by default, but creating a
RESTful API can be tricky. This plugin helps to do it, and we will see how to
do this in the following section.

• mem-store: Seneca comes with a data abstraction layer so that we can handle
the data storage in different places: Mongo, SQL databases, and so on. Out of
the box, Seneca provides an in-memory storage so that it just works.

• minimal_plugin: This is our plugin. So, now we know that Seneca is able to
load it.

The plugin we wrote does nothing. Now, it is time to write something useful:

function math(options) {

 this.add({role:'math', cmd: 'sum'}, function(msg, respond) {
 respond(null, { answer: msg.left + msg.right })

Chapter 2

[45]

 })

 this.add({role:'math', cmd: 'product'}, function(msg, respond)
 {
 respond(null, { answer: msg.left * msg.right })
 })

}

require('seneca')()
 .use(math)
 .act('role:math,cmd:sum,left:1,right:2', console.log)

First of all, notice that in the last instruction, act() follows a different format.
Instead of passing a dictionary, we pass a string with the same key values as the
first argument, as we did with a dictionary. There is nothing wrong with it, but
my preferred approach is to use the JSON objects (dictionaries), as it is a way of
structuring the data without having syntax problems.

In the previous example, we can see how the code got structured as a plugin. If we
execute it, we can see that the output is similar to the following one:

One of the things you need to be careful about in Seneca is how to initialize your
plugins. The function that wraps the plugin (in the preceding example, the math()
function) is executed synchronously by design and it is called the definition function.
If you remember from the previous chapter, Node.js apps are single-threaded.

To initialize a plugin, you add a special init() action pattern. This action pattern
is called in sequence for each plugin. The init() function must call its respond
callback without errors. If the plugin initialization fails, then Seneca exits the Node.js
process. You want your microservices to fail fast (and scream loudly) when there's a
problem. All plugins must complete initialization before any actions are executed.

Microservices in Node.js – Seneca and PM2 Alternatives

[46]

Let's see an example of how to initialize a plugin in the following way:

function init(msg, respond) {
 console.log("plugin initialized!");
 console.log("expensive operation taking place now... DONE!");
 respond();
}

function math(options) {

 this.add({role:'math', cmd: 'sum'}, function(msg, respond) {
 respond(null, { answer: msg.left + msg.right })
 })

 this.add({role:'math', cmd: 'product'}, function(msg, respond)
 {
 respond(null, { answer: msg.left * msg.right })
 })

 this.add({init: "math"}, init);
}
require('seneca')()
 .use(math)
 .act('role:math,cmd:sum,left:1,right:2', console.log)

Then, after executing this file, the output should look very similar to the following
image:

As you can read from the output, the function that initializes the plugin was called.

The general rule in Node.js apps is to never block the thread.
If you find yourself blocking the thread, you might need to
rethink how to avoid it.

Chapter 2

[47]

Web server integration
In Chapter 1, Microservices Architecture, we put a special emphasis on using standard
technologies to communicate with your microservices.

Seneca, by default, uses a TCP transport layer that, although it uses TCP, is not easy
to interact with, as the criteria to decide the method that gets executed is based on a
payload sent from the client.

Let's dive into the most common use case: your service is called by JavaScript on
a browser. Although it can be done, it would be much easier if Seneca exposed a
REST API instead of the JSON dialog, which is perfect for communication between
microservices (unless you have ultra-low latency requirements).

Seneca is not a web framework. It can be defined as a general purpose microservices

framework, so it would not make too much sense to build it around a concrete case
like the one exposed before.

Instead of that, Seneca was built in a way that makes the integration with other
frameworks fairly easy.

Express is the first option when building web applications on Node.js. The amount
of examples and documentation that can be found on Internet about Express makes
the task of learning it fairly easy.

Seneca as Express middleware
Express was also built under the principle of API composition. Every piece of
software in Express is called middleware, and they are chained in the code in order
to process every request.

In this case, we are going to use seneca-web as a middleware for Express so that
once we specify the configuration, all the URLs will follow a naming convention.

Let's consider the following example:

var seneca = require('seneca')()

seneca.add('role:api,cmd:bazinga',function(args,done){
 done(null,{bar:"Bazinga!"});
});
seneca.act('role:web',{use:{
 prefix: '/my-api',
 pin: {role:'api',cmd:'*'},

 map:{
 bazinga: {GET: true}

Microservices in Node.js – Seneca and PM2 Alternatives

[48]

 }
}})
var express = require('express')
var app = express()
app.use(seneca.export('web'))
app.listen(3000)

This code is not as easy to understand as the previous examples, but I'll do my best
to explain it:

• The second line adds a pattern to Seneca. We are pretty familiar with it as all
the examples on this book do that.

• The third instruction, seneca.act(), is where the magic happens. We are
mounting the patterns with the role:api pattern and any cmd pattern (cmd:*)
to react to URLs under /my-api. In this example, the first seneca.add() will
reply to the URL /my-api/bazinga, as /my-api/ is specified by the prefix
variable and bazinga by the cmd part of the seneca.add() command.

• app.use(seneca.export('web')) instructs Express to use seneca-web as
middleware to execute actions based on the configuration rules.

• app.listen(3000) binds the port 3000 to Express.

If you remember from an earlier section in this chapter, seneca.act() takes a
function as a second parameter. In this case, we are exposing configuration to be
used by Express on how to map the incoming requests to Seneca actions.

Let's test it:

Chapter 2

[49]

The preceding code is pretty dense, so let's explain it down to the code from
the browser:

• Express receives a request that is handled by seneca-web.
• The seneca-web plugin was configured to use /my-api/ as a prefix, which

is being bound with the keyword pin (refer to seneca.act() from the
preceding code) to Seneca actions (seneca.add()) that contain the role:api
pattern, plus any cmd pattern (cmd:*). In this case, /my-api/bazinga
corresponds to the first (and only) seneca.add() command with the {role:
'api', cmd: 'bazinga'} pattern.

It takes a while to fully understand the integration between Seneca and Express, but
once it is clear, the flexibility offered by the API composability pattern is limitless.

Express itself is big enough to be out of the scope of this book, but it is worth taking a
look as it is a very popular framework.

Data storage
Seneca comes with a data-abstraction layer that allows you to interact with the data
of your application in a generic way.

By default, Seneca comes with an in-memory plugin (as explained in the previous
section), therefore, it works out of the box.

We are going to be using it for the majority of this book, as the different storage
systems are completely out of scope and Seneca abstracts us from them.

Seneca provides a simple data abstraction layer (Object-relational mapping (ORM))
based on the following operations:

• load: This loads an entity by identifier
• save: This creates or updates (if you provide an identifier) an entity
• list: This lists entities matching a simple query
• remove: This deletes an entity by an identifier

Microservices in Node.js – Seneca and PM2 Alternatives

[50]

Let's build a plugin that manages employees in the database:

module.exports = function(options) {
 this.add({role: 'employee', cmd: 'add'}, function(msg, respond){
 this.make('employee').data$(msg.data).save$(respond);
 });

 this.find({role: 'employee', cmd: 'get'}, function(msg, respond)
 {
 this.make('employee').load$(msg.id, respond);
 });
}

Remember that the database is, by default, in memory, so we don't need to worry
about the table structure for now.

The first command adds an employee to the database. The second command recovers
an employee from the database by id.

Note that all the ORM primitives in Seneca end up with the dollar symbol ($).

As you can see now, we have been abstracted from the data storage details. If the
application changes in the future and we decide to use MongoDB as a data storage
instead of an in-memory storage, the only thing we need to take care of is the plugin
that deals with MongoDB.

Let's use our employee management plugin, as shown in the following code:

var seneca = require('seneca')().use('employees-storage')
var employee = {
 name: "David",
 surname: "Gonzalez",
 position: "Software Developer"
}

function add_employee() {
 seneca.act({role: 'employee', cmd: 'add', data: employee},
 function (err, msg) {
 console.log(msg);
 });
}
add_employee();

In the preceding example, we add an employee to the in-memory database by
invoking the pattern exposed in the plugin.

Chapter 2

[51]

Along the book, we will see different examples about how to use the data abstraction
layer, but the main focus will be on how to build microservices and not how to deal
with the different data storages.

PM2 – a task runner for Node.js
PM2 is a production-process manager that helps to scale the Node.js up or down,
as well as load balance the instances of the server. It also ensures that the processes
are running constantly, tackling down one of the side effects of the thread model of
Node.js: an uncaught exception kills the thread, which in turn kills your application.

Single-threaded applications and exceptions
As you learned before, Node.js applications are run in a single thread. This doesn't
mean that Node.js is not concurrent, it only means that your application runs on a
single thread, but everything else runs parallel.

This has an implication: if an exception bubbles out without being handled, your

application dies.

The solution for this is making an intensive use of promises libraries such as
bluebird; it adds handlers for success and failures so that if there is an error,
the exception does not bubble out, killing your app.

However, there are some situations that we can't control, we call them unrecoverable

errors or bugs. Eventually, your application will die due to a badly handled error.
In languages such as Java, an exception is not a huge deal: the thread dies, but the
application continues working.

In Node.js, it is a big problem. This problem was solved in the first instance using
task runners such as forever.

Both of them are task runners that, when your application exits for some reason,
rerun it again so it ensures the uptime.

Consider the following example:

Microservices in Node.js – Seneca and PM2 Alternatives

[52]

The helloWorld.js application is now handled by forever, which will rerun it if the
application dies. Let's kill it, as shown in the following image:

As you can see, forever has spawned a different process with the 4903 PID. Now, we
issue a kill command (kill -9 4093) and that is the output from forever, as follows:

Although we have killed it, our application was respawned by forever without any
downtime (at least, noticeable downtime).

As you can see, forever is pretty basic: it reruns the application as many times as it
gets killed.

There is another package called nodemon, which is one of the most useful tools for
developing Node.js applications. It reloads the application if it detects changes in the
files that it monitors (by default, *.*):

Now, if we modify the helloWorld.js file, we can see how nodemon reloads the
application. This is very interesting in order to avoid the edit/reload cycle and speed
up the development.

Chapter 2

[53]

Using PM2 – the industry-standard task
runner
Although, forever looks very interesting, PM2 is a more advanced task runner
than forever. With PM2, you can completely manage your application life cycle
without any downtime, as well as scale your application up or down with a
simple command.

PM2 also acts as a load balancer.

Let's consider the following example:

var http = require('http');

var server = http.createServer(function (request, response) {
 console.log('called!');
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.end("Hello World\n");
});
server.listen(8000);
console.log("Server running at http://127.0.0.1:8000/");

This is a fairly simple application. Let's run it using PM2:

pm2 start helloWorld.js

This produces an output similar to the following image:

PM2 has registered an app named helloWorld. This app is running in the fork
mode (that means, PM2 is not acting as a load balancer, it has just forked the app)
and the PID of the operating system is 6858.

Microservices in Node.js – Seneca and PM2 Alternatives

[54]

Now, as the following screen suggests, we will run pm2 show 0, which shows the
information relevant to the app with id 0, as shown in the following image:

With two commands, we have managed to run a simple application in a very
sophisticated way.

From now on, PM2 will ensure that your app is always running so that if your
application dies, PM2 will restart it again.

We can also monitor the number of apps PM2 is running:

pm2 monit

Chapter 2

[55]

This shows the following output:

This is the PM2 monitor. In this case, it is a complete overkill as our system is only
composed of one application, which runs in the fork mode.

We can also see the logs executing pm2 logs as shown in the following image:

As you can see, PM2 feels solid. With few commands, we have covered 90% of the
monitoring necessities of our application. However, this is not everything.

Microservices in Node.js – Seneca and PM2 Alternatives

[56]

PM2 also comes with an easy way to reload your applications without downtime:

pm2 reload all

This command ensures that your apps are restarted with zero downtime. PM2 will
queue the incoming requests for you and reprocess them once your app is responsive
again. There is a more fine-grained option where you can specify reloading only
certain apps by specifying the app name:

pm2 reload helloWorld

For those who have been fighting for years with Apache, NGINX, PHP-FPM, and so
on, this will sound very familiar.

Another interesting feature in PM2 is running your application in the cluster mode.
In this mode, PM2 spawns a controller process and as many workers (your app) as
you specify so that you can take the benefit of multicore CPUs with a single-thread
technology such as Node.js.

Before doing this, we need to stop our running application:

pm2 stop all

This will result in the following output:

PM2 remembers the apps that were running, so before rerunning the app in the
cluster mode, we need to inform PM2 to forget about your app, as follows:

pm2 delete all

Chapter 2

[57]

We are ready to run our app in the cluster mode:

pm2 start helloWorld.js -i 3

PM2 is acting as a round-robin between the main process and the three workers so
that they can cope with three requests at the same time. We can also scale down or
up our number of workers:

pm2 scale helloWorld 2

This will result in two processes being run for the same app instead of three:

As you can see, with very little effort, we have managed to configure our app in
order to be production ready.

Now, we can save the status of PM2 so that if we restart the server, and PM2 is
running as a daemon, the apps will automatically start.

PM2 has a code API so that we can write a Node.js program to manage all the steps
that we have been manually doing. It also has a way of configuring your services
with a JSON file. We will discuss this in more depth in Chapter 6, Testing and

Documenting Node.js Microservices, when we study how to use PM2 and Docker to
deploy Node.js applications.

Microservices in Node.js – Seneca and PM2 Alternatives

[58]

Summary
In this chapter, you learned the basics of Seneca and PM2 so that we will be able
to build and run a microservices-oriented system in Chapter 4, Writing Your First

Microservice in Node.js, of this book.

We have also demonstrated that a few of the concepts exposed in the previous
chapter are actually helpful in solving real-world problems as well as making
our life very easy.

In the next chapter, we will talk about how to split a monolithic application, a task
for which we will need to know a few of the concepts developed during this chapter.

[59]

From the Monolith to
Microservices

In my professional life, I have worked in quite a few different companies, mainly in
financial services, and all of the companies that I have worked for follow the same
pattern as shown in the following:

1. A company is set up by a couple of people with good domain knowledge:
insurance, payments, credit cards, and so on.

2. The company grows, demanding new business requirements that need to be
satisfied quickly (regulation, big customers demanding silly things, and so
on), which are built in a hurry with little to no planning.

3. The company experiences another phase of growing, where the business
transactions are clearly defined and poorly modelled by a hard-to-maintain
monolithic software.

4. The company increases the headcount that drives into growing pains and
loss of efficiency due to restrictions imposed on how the software was built
in the first instance.

This chapter is not only about how to avoid the previous flow (uncontrolled organic
growth), but it is also about how to model a new system using microservices.
This chapter is the soul of this book, as I will try to synthetize my experience in
a few pages, setting up the principles to be followed in Chapter 4, Writing Your

First Microservice in Node.js, where we will be building a full system based on
microservices using the lessons learned in the previous chapters.

From the Monolith to Microservices

[60]

First, there was the monolith
A huge percentage (my estimate is around 90%) of the modern enterprise software is
built following a monolithic approach.

Large software components that run in a single container and have a well-defined
development life cycle, which goes completely against the agile principles, deliver
early and deliver often (https://en.wikipedia.org/wiki/Release_early,_
release_often), as follows:

• Deliver early: The sooner you fail, the easier it is to recover. If you are
working for two years on a software component and then it is released, there
is a huge risk of deviation from the original requirements, which are usually
wrong and change every few days.

• Deliver often: Delivering often, the stakeholders are aware of the progress
and can see the changes reflected quickly in the software. Errors can be fixed
in a few days and improvements are identified easily.

Companies build big software components instead of smaller ones that work
together as it is the natural thing to do, as shown in the following:

1. The developer has a new requirement.
2. He builds a new method on an existing class on the service layer.
3. The method is exposed on the API via HTTP, SOAP, or any other protocol.

Now, multiply it by the number of developers in your company, and you will obtain
something called organic growth. Organic growth is a type of uncontrolled and

unplanned growth on software systems under business pressure without an adequate
long-term planning, and it is bad.

How to tackle organic growth?
The first thing required to tackle organic growth is to make sure that the business
and IT are aligned in the company. Usually, in big companies, IT is not seen as a
core part of the business.

Organizations outsource their IT systems, keeping the price in mind, but not the
quality so that the partners building these software components are focused on one
thing: deliver on time and according to the specifications even if they are incorrect.

This produces a less-than-ideal ecosystem to respond to the business needs with
a working solution for an existing problem. IT is lead by people who barely
understand how the systems are built, and usually overlook the complexity of
software development.

https://en.wikipedia.org/wiki/Release_early,_release_often
https://en.wikipedia.org/wiki/Release_early,_release_often

Chapter 3

[61]

Fortunately, this is a changing tendency as IT systems become the driver of 99% of the
businesses around the world, but we need to get smarter about how we build them.

The first measure to tackle organic growth is aligning IT and business stakeholders to
work together: educating the nontechnical stakeholders is the key to success.

If we go back to the few big releases schema. Can we do it better?

Of course we can. Divide the work into manageable software artifacts that model a
single, well-defined business activity and give it an entity.

It does not need to be a microservice at this stage, but keeping the logic inside of a
separated, well-defined, easily testable, and decoupled module will give us a huge
advantage for future changes in the application.

Let's consider the following example:

In this insurance system, you can see that someone was in a hurry. SMS and e-mail
sender, although both are communication channels, they have a very different nature
and you probably want them to act in different ways.

From the Monolith to Microservices

[62]

The calling services are grouped into the following two high-level entities:

• New Business: The new customers that receive an e-mail when they sign up
• Renewals: The existing customers that receive an SMS when the insurance

policy is ready to be renewed

At some point, the system needed to send SMSs and e-mails and someone created
the communication service entity that handles all the third-party communications.

It looks like a good idea in the beginning. SMS or e-mail, at the end of the day, is
only a channel, the communication mechanism will be 90% same and we can reuse
plenty of functionality.

What happens if we suddenly want to integrate a third-party service that handles all
the physical post?

What happens if we want to add a newsletter that goes out to the customers once a
week with information that we consider interesting for our customers?

The service will grow out of control and it will become more difficult to test, release,
and ensure that the changes in the SMS code won't affect sending the e-mail in
any form.

This is organic growth and, in this case, it is related to a law called Conway's Law,
which states the following:

Any organization that designs a system (defined more broadly here than just
information systems) will inevitably produce a design whose structure is a

copy of the organization's communication structure.

In this case, we are falling into a trap. We are trying to model the communication on
a single software component that is probably too big and complex to react quickly to
new business needs.

Chapter 3

[63]

Let's take a look at the following diagram:

Now, we have encapsulated every communication channel on its own service
(which, later on, will be deployed as a microservice) and we will do the same for
future communication channels.

This is the first step to beat organic growth: create fine-grained services with
well-defined boundaries and a single responsibility—do something small, but do it well.

How abstract is too abstract?
Our brain can't handle complicated mechanisms. The abstraction capacity is one of
the most recent human intelligence acquisitions.

In the example from the previous section, I've given something for good, which will
upset half of the programmers in the world: eradicating the abstraction of our system.

From the Monolith to Microservices

[64]

The abstraction capacity is something that we learn along the years and, unlike
intelligence, it can be trained. Not everyone can reach the same level of abstraction,
and if we mix the specific and complex domain knowledge required by some
industries with a high-level of abstraction, we have the perfect recipe for a disaster.

When building software, one of the golden rules that I always tried to follow
(and try is the correct word, as I always find huge opposition to it) is to avoid
premature abstraction.

How many times did you find yourself in a corner with a simple set of requirements:
build a program to solve X. However, your team goes off and anticipates all the
possible variations of X, without even knowing if they are plausible. Then, once the
software is in production, one of the stakeholders comes with a variation of X that
you could have never imagined (as the requirements were not even correct) and
now, getting this variation to work will cost you a few days and a massive refactor.

The way to avoid this problem is simple: avoid abstraction without at least three use cases.

Do not factor in the possibility of sending the data through different types of
channels as it might not happen and you are compromising the current feature with
unnecessary abstractions. Once you have at least one other communication channel,
it is time to start thinking about how these two software components can be designed
better, and when the third use case shows up, refactor.

Remember that when building microservices, they should be small enough to be
rewritten on a single sprint (around two weeks), so the benefits of having a working
prototype in such a short period of time is worth the risk of having to rewrite it once
the requirements are more concrete: something to show to the stakeholders is the
quickest way to nail down the requirements.

Seneca is great in this regard as, through pattern matching, we can extend the API of
a given microservice without affecting the existing calling code: our service is open
for extension, but closed for modification (the SOLID principles) as we are adding
functionality without affecting the existing one. We will see more complete examples
of this behavior in Chapter 4, Writing Your First Microservice in Node.js.

Then the microservices appeared
Microservices are here to stay. Nowadays, the companies give more importance
to the quality of the software. As stated in the previous section, deliver early and
deliver often are the key to succeed in software development.

Chapter 3

[65]

Microservices are helping us to satisfy business needs as quickly as possible through
modularity and specialization. Small pieces of software that can easily be versioned
and upgraded within a few days and they are easy to test as they have a clear and
small purpose (specialization) and are written in such a way that they are isolated
from the rest of the system (modularization).

Unfortunately, it is not common to find the situation as described previously.
Usually, big software systems are not built in a way that modularization or
specialization are easy to identify. The general rule is to build a big software
component that does everything and the modularization is poor, so we need
to start from the very basics.

Let's start by writing some code, as shown in the following:

module.exports = function(options) {

 var init = {}

 /**
 * Sends one SMS
 */
 init.sendSMS = function(destination, content) {
 // Code to send SMS
 }

 /**
 * Reads the pending list of SMS.
 */
 init.readPendingSMS = function() {
 // code to receive SMS
 return listOfSms;
 }

 /**
 * Sends an email.
 */
 init.sendEmail = function(subject, content) {
 // code to send emails
 }

 /**
 * Gets a list of pending emails.
 */
 init.readPendingEmails = function() {

From the Monolith to Microservices

[66]

 // code to read the pending emails
 return listOfEmails;
 }

 /**
 * This code marks an email as read so it does not get
 * fetch again by the readPendingEmails function.
 */
 init.markEmailAsRead = function(messageId) {
 // code to mark a message as read.
 }

 /**
 * This function queues a document to be printed and
 * sent by post.
 */
 init.queuePost = function(document) {
 // code to queue post
 }

 return init;
}

As you can see, this module can be easily called communications service and it
will be fairly easy to guess what it is doing. It manages the e-mail, SMS, and post
communications.

This is probably too much. This service is deemed to grow out of control, as people
will keep adding methods related to communications. This is the key problem of
monolithic software: the bounded context spans across different areas, affecting the
quality of our software from both functional and maintenance point of view.

If you are a software developer, a red flag will be raised straightaway: the cohesion
of this module is quite poor.

Although it could have worked for a while, we are now changing our mindset. We
are building small, scalable, and autonomous components that can be isolated. The
cohesion in this case is bad as the module is doing too many different things: e-mail,
SMS, and post.

What happens if we add another communication channel such as Twitter and
Facebook notifications?

Chapter 3

[67]

The service grows out of control. Instead of having small functional software
components, you end up with a gigantic module that will be difficult to refactor, test,
and modify. Let's take a look at the following SOLID design principles, explained in
Chapter 2, Microservices in Node.js – Seneca and PM2 Alternatives:

• Single-responsibility principle: The module does too many things.
• Open for extension, closed for modification: The module will need to be

modified to add new functionalities and probably change the common code.
• Liskov Substitution: We will skip this one again.
• Interface segregation: We don't have any interface specified in the module,

just the implementation of an arbitrary set of functions.
• Dependency injection: There is no dependency injection. The module needs

to be built by the calling code.

Things get more complicated if we don't have tests.

Therefore, let's split it into various small modules using Seneca.

First, the e-mail module (email.js) will be as follows:

module.exports = function (options) {

 /**
 * Sends an email.
 */
 this.add({channel: 'email', action: 'send'}, function(msg,
 respond) {
 // Code to send an email.
 respond(null, {...});
 });

 /**
 * Gets a list of pending emails.
 */
 this.add({channel: 'email', action: 'pending'}, function(msg,
 respond) {
 // Code to read pending email.
 respond(null, {...});
 });

 /**
 * Marks a message as read.
 */

From the Monolith to Microservices

[68]

 this.add({channel: 'email', action: 'read'}, function(msg,
 respond) {
 // Code to mark a message as read.
 respond(null, {...});
 });
}

The SMS module (sms.js) will be as follows:

module.exports = function (options) {

 /**
 * Sends an email.
 */
 this.add({channel: 'sms', action: 'send'}, function(msg,
 respond) {
 // Code to send a sms.
 respond(null, {...});
 });

 /**
 * Receives the pending SMS.
 */
 this.add({channel: 'sms', action: 'pending'}, function(msg,
 respond) {
 // Code to read pending sms.
 respond(null, {...});
 });
}

Finally, the post module (post.js) will be as follows:

module.exports = function (options) {

 /**
 * Queues a post message for printing and sending.
 */
 this.add({channel: 'post', action: 'queue'}, function(msg,
 respond) {
 // Code to queue a post message.
 respond(null, {...});
 });
}

Chapter 3

[69]

The following diagram shows the new structure of modules:

From the Monolith to Microservices

[70]

Now, we have three modules. Each one of these modules does one specific thing
without interfering with each other; we have created high-cohesion modules.

Let's run the preceding code, as follows:

var seneca = require("seneca")()
 .use("email")
 .use("sms")
 .use("post");

seneca.listen({port: 1932, host: "10.0.0.7"});

As simple as that, we have created a server with the IP 10.0.0.7 bound that listens
on the 1932 port for incoming requests. As you can see, we haven't referenced any
file, we just referenced the module by name; Seneca will do the rest.

Let's run it and verify that Seneca has loaded the plugins:

node index.js --seneca.log.all | grep DEFINE

This command will output something similar to the following lines:

If you remember from Chapter 2, Microservices in Node.js – Seneca and PM2

Alternatives, Seneca loads a few plugins by default: basic, transport, web, and
mem-store, which allow Seneca to work out of the box without being hassled
with the configuration. Obviously, as we will see in Chapter 4, Writing Your First

Microservice in Node.js, that the configuration is necessary as, for example, mem-store
will only store data in the memory without persisting it between executions.

Aside from the standard plugins, we can see that Seneca has loaded three extra
plugins: email, sms, and post, which are the plugins that we have created.

Chapter 3

[71]

As you can see, the services written in Seneca are quite easy to understand once you
know how the framework works. In this case, I have written the code in the form of
a plugin so that it can be used by different instances of Seneca on different machines,
as Seneca has a transparent transport mechanism that allows us to quickly redeploy
and scale parts of our monolithic app as microservices, as follows:

• The new version can be easily tested, as changes on the e-mail functionality
will only affect sending the e-mail.

• It is easy to scale. As we will see in the next chapter, replicating a service is as
easy as configuring a new server and pointing our Seneca client to it.

• It is also easy to maintain, as the software is easier to understand and modify.

Disadvantages
With microservices, we solve the biggest problems in modern enterprise, but that
does not mean that they are problem free. Microservices often lead to different types
of problems that are not easy to foresee.

The first and most concerning one is the operational overhead that could chew up
the benefits obtained from using microservices. When you are designing a system,
you should always have one question in mind: how to automate this? Automation is
the key to tackling this problem.

The second disadvantage with microservices is nonuniformity on the applications.
A team might consider something a good practice that could be banned in another
team (especially around exception handling), which adds an extra layer of isolation
between teams that probably does not do well for the communication of your
engineers within the team.

Lastly, but not less important, microservices introduce a bigger communication
complexity that could lead to security problems. Instead of having to control a
single application and its communication with the outer world, we are now facing a
number of servers that communicate with each other.

Splitting the monolith
Consider that the marketing department of your company has decided to run an
aggressive e-mail campaign that is going to require peaks of capacity that could
harm the normal day-to-day process of sending e-mail. Under stress, the e-mails
will be delayed and that could cause us problems.

Luckily, we have built our system as explained in the previous section. Small Seneca
modules in the form of a high-cohesion and low-coupled plugins.

From the Monolith to Microservices

[72]

Then, the solution to achieve it is simple: deploy the e-mail service (email.js) on
more than one machine:

var seneca = require("seneca")().use("email");
seneca.listen({port: 1932, host: "new-email-service-ip"});

Also, create a Seneca client pointing to it, as follows:

var seneca = require("seneca")()
 .use("email")
 .use("sms")
 .use("post");
seneca.listen({port: 1932, host: "10.0.0.7"});

// interact with the existing email service using "seneca"

var senecaEmail = require("seneca").client({host: "new-email-
 service-ip", port: 1932});

// interact with the new email service using "senecaEmail"

From now on, the senecaEmail variable will contact the remote service when calling
act and we would have achieved our goal: scale up our first microservice.

Problems splitting the monolith – it is all
about the data
Data storage could be problematic. If your application has grown out of control for a
number of years, the database would have done the same, and by now, the organic
growth will make it hard to deal with significant changes in the database.

Microservices should look after their own data. Keeping the data local to the service
is one of the keys to ensure that the system remains flexible as it evolves, but it
might not be always possible. As an example, financial services suffer especially
from one of the main weak points of microservices-oriented architectures: the lack of

transactionality. When a software component deals with money, it needs to ensure
that the data remains consistent and not eventually consistent after every single
operation. If a customer deposits money in a financial company, the software that
holds the account balance needs to be consistent with the money held in the bank,
otherwise, the reconciliation of the accounts will fail. Not only that, if your company
is a regulated entity, it could cause serious problems for the continuity of the business.

Chapter 3

[73]

The general rule of thumb, when working with microservices and financial
systems, is to keep a not-so-microservice that deals with all the money and creates
microservices for the auxiliary modules of the system such as e-mailing, SMS, user
registration, and so on, as shown in the following image:

As you can see in the preceding picture, the fact that payments will be a big
microservice instead of smaller services, it only has implications in the operational
side, there is nothing preventing us from modularizing the application as seen
before. The fact that withdrawing money from an ATM has to be an atomic operation
(either succeed or fail without intermediate status) should not dictate how we
organize the code in our application, allowing us to modularize the services, but
spanning the transaction scope across all of them.

Organizational alignment
In a company where the software is built based on microservices, every single
stakeholder needs to be involved in decision making.

Microservices are a huge paradigm shift. Usually, large organizations tend to build
software in a very old fashioned manner. Big releases every few months that require
days to complete the quality assurance (QA) phase and few hours to deploy.

From the Monolith to Microservices

[74]

When a company chooses to implement a microservices-oriented architecture, the
methodology changes completely: small teams work on small features that are
built, tested, and deployed on their own. The teams do one thing (one microservice,
or more realistic, a few of them) and they do it well (they master the domain and
technical knowledge required to build the software).

These are what usually called cross-functional teams. A unit of work of few people
that have the required knowledge to build high-quality software components.

It is also important to flag that the team has to master the domain knowledge needed
to understand the business requirements.

Here is where the majority of the companies where I have worked in my professional
life fail (in my opinion). Developers are considered brick stackers that magically
understand the business flows without being exposed to them before. If one
developer delivers X amount of work in one week, ten developers will deliver 10X.
This is wrong.

People in cross-functional teams that build the microservices have to master (not
only know) the domain-specific knowledge in order to be efficient and factor the
Conway's Law and its implications into the system for changing how the business
processes work.

When talking about organizational alignment in microservices, autonomy is the
key. The teams need to be autonomous in order to be agile while building the
microservices, which implies keeping the technical authority within the team,
as follows:

• Languages used
• Code standards
• Patterns used to solve problems
• Tools chosen to build, test, debug, and deploy the software

This is an important part, as this is where we need to define how the company builds
software and where the engineering problems may be introduced.

As an example, we can look into the coding standards, as shown in the following list:

• Do we want to keep the same coding standards across the teams?
• Do we want each team to have their own coding standards?

Chapter 3

[75]

In general, I am always in favor of the 80% rule: 80% of perfection is more than enough

for 100% of the use cases. It means that loosening up the coding standards (it can be
applied to other areas) and allowing some level of imperfection/personalization,
helps to reduce the friction between teams and also allows the engineers to quickly
catch up with the very few important rules to follow such as logging strategies or
exception handling.

If your coding standards are too complicated, there will be friction when a team tries
to push a code into a microservice out of their usual scope (remember, teams own the
services, but every team can contribute to them).

Summary
In this chapter, we discussed the principles of building monolithic applications
oriented to be split as microservices, depending on the business needs. As you have
learned, the Atomicity, Consistency, Isolation, Durability (ACID) design principles
are concepts that we need to have in mind in order to build high quality software.

You have also learned that we cannot assume that we are going to be able to design
a system from scratch, so we need to be smart about how we build the new parts
of the system and how we refactor the existing ones so that we achieve the level of
flexibility required to satisfy the business needs and be resilient.

We also have given a small introduction about monolithic designed databases and
how they are the biggest pain points when splitting a monolithic software into
microservices, as it is usually required to shut down the system for a few hours in
order to split the data into local databases. This subject could well be an entire book
as new trends with NoSQL databases are changing the game of data storage.

Finally, we discussed how to align the teams of engineers in our company in order to
be efficient while keeping the flexibility and resilience needed to be able to be agile,
as well as how the Conway's Law impacts the conversion of monolithic systems into
microservices-oriented architectures.

In the next chapter, we will apply all the principles discussed in the first three
chapters, as well as a big dose of common sense to build a full working system
based on microservices.

[77]

Writing Your First
Microservice in Node.js

We have been learning about how to build robust microservices-oriented software,
and now it is time to put all the concepts to practice. In this chapter, we are going to
build a microservices-oriented e-commerce using Seneca and some other frameworks
that are going to allow us to write a software that will benefit from the particularities
of the microservices.

Micromerce – the big picture
It covers the following:

• Writing microservices
• Sizing microservices
• Creating APIs
• Integrating Seneca with Express
• Storing data using Seneca

In this chapter, we are going to write a full (nearly) simplistic e-commerce solution
based on microservices. Full means full from the conceptual point of view, but for
obvious reasons, it won't be full (as production ready) as it could take us a few books
to handle all the possible flows.

We won't go deep in to the UI, as it is not related to the subject of this book. What
we will do instead is a microservice that will aggregate all the other microservices,
creating a frontend API to be consumed by a Single-Page Application (SPA), built
with any of the modern JavaScript frameworks.

Writing Your First Microservice in Node.js

[78]

In this chapter, we are going to develop the following four microservices:

• Product Manager: This microservice will be responsible for adding, editing,
and removing products from our database, as well as serving products to the
customers. This microservice will be partially public for a potential admin
site to add/remove products.

• Order Manager: This microservice will be responsible for managing the
order and billing.

• Emailer: This microservice will be responsible for delivering e-mails to
the customers.

• UI: This microservice will expose the feature from the other microservices to
a potential SPA, but we will only build the JSON interface.

Building the four preceding microservices, we will develop the concepts discussed
in the previous chapters so that, by the end of this chapter, we will be able to identify
the most common pitfalls going forward. Keep in mind that the objective of this book
is not converting you into a microservices or Node.js expert, but to give you the tools
required to learn by yourself, as well as make you aware of the best design principles
and the most common pitfalls.

Let's take a look at the deployment diagram:

Chapter 4

[79]

This diagram shows how our company (the yellow square) hides some of our
microservices from the real world and exposes some others to different networks,
as follows:

• UI will be exposed to the Internet. Everybody will be able to hit this endpoint.
• Product Management will manage the products in our e-commerce. It will

have the following two interfaces:
 ° A Seneca endpoint from where the UI will extract data
 ° A JSON API from where the office of our company will be able to

create, update, and delete products

• Emailer will be our communication channel with our customers. We will
use this microservice to explain the good points of Seneca, and we will also
give an example of the eventual consistency and system degradation when a
microservice fails.

• Order Manager: This microservice will let us handle the orders for our
customers. With this microservice, we will discuss how to handle the fact
that the data is local to each microservice, instead of being global to the
system. You can't just go to the database to recover the product name or
price, it needs to be recovered from other microservice.

As you can see, there is no user or staff management, but with these
four microservices, we will be able to develop the core concepts of
microservices architectures. Seneca comes with a very powerful data
and transport plugin system that makes it easy to use Seneca with
different data storages and transport systems.

For all our microservices, we are going to use MongoDB as the storage. Seneca comes
with an out-of-the-box in-memory database plugin that allows you to start coding
straightaway, but the storage is transient: it does not persist the data between calls.

Product Manager – the two-faced core
Product Manager is the core of our system. I know what you are thinking:
microservices should be small (micro) and distributed (no central point), but you
need to set the conceptual centre somewhere, otherwise you will end up with a
fragmented system and traceability problems (we will talk about it later).

Writing Your First Microservice in Node.js

[80]

Building a dual API with Seneca is fairly easy, as it comes with a quite
straightforward integration with Express. Express is going to be used to expose some
capabilities of the UI such as editing products, adding products, deleting products,
and so on. It is a very convenient framework, easy to learn, and it integrates well
with Seneca. It is also a de-facto standard on Node.js for web apps, so it makes it easy
to find information about the possible problems.

It is going to also have a private part exposed through Seneca TCP (the default
plugin in Seneca) so that our internal network of microservices (specifically, the UI)
will be able to access the list of products in our catalogue.

Product Manager is going to be small and cohesioned (it will only manage products),
as well as scalable, but it will hold all the knowledge required to deal with products
in our e-commerce.

First thing we need to do is to define our Product Manager microservice, as follows:

• This is going to have a function to retrieve all the products in the database.
This is probably a bad idea in a production system (as it probably would
require pagination), but it works for our example.

• This should have one function that fetches all the products for a given
category. It is similar to the previous one, it would need pagination in a
production-ready system.

• This should have a function to retrieve products by identifier (id).
• This should have one function that allows us to add products to the

database (in this case MongoDB). This function will use the Seneca data
abstraction to decouple our microservice from the storage: we will be able
to (in theory) switch Mongo to a different database without too much hassle
(in theory again).

• This should have one function to remove products. Again, using Seneca
data abstraction.

• This should have one function to edit products.

Our product will be a data structure having four fields: name, category, description,
and price. As you can see, it is a bit simplistic, but it will help us to understand the
complicated world of microservices.

Our Product Management microservice is going to use MongoDB (https://www.
mongodb.org/). Mongo is a document-oriented schema-less database that allows an
enormous flexibility to store data such as products (that, at the end of the day, are
documents). It is also a good choice for Node.js as it stores JSON objects, which is a
standard, created for JavaScript (JSON stands for JavaScript Object Notation), so
that looks like the perfect pairing.

https://www.mongodb.org/
https://www.mongodb.org/

Chapter 4

[81]

There is a lot of useful information on the MongoDB website if you want to learn
more about it.

Let's start coding our functions.

Fetching products
To fetch products, we go to the database and dump the full list of products straight
to the interface. In this case, we won't create any pagination mechanism, but in
general, paginating data is a good practice to avoid database (or applications, but
mainly database) performance problems.

Let's see the following code:

/**
 * Fetch the list of all the products.
 */
seneca.add({area: "product", action: "fetch"}, function(args,
 done) {
 var products = this.make("products");
 products.list$({}, done);
});

We already have a pattern in Seneca that returns all the data in our database.

The products.list$() function will receive the following two parameters:

• The query criteria
• A function that receives an error and result object (remember the error-first

callback approach)

Seneca uses the $ symbol to identify the key functions such as list$, save$, and
so on. Regarding the naming of the properties of your objects, as long as you use
alphanumeric identifiers, your naming will be collision free.

We are passing the done function from the seneca.add() method to the list$
method. This works as Seneca follows the callback with error-first approach. In
other words, we are creating a shortcut for the following code:

seneca.add({area: "product", action: "fetch"}, function(args,
 done) {
 var products = this.make("products");
 products.list$({}, function(err, result) {
 done(err, result);
 });
});

Writing Your First Microservice in Node.js

[82]

Fetching by category
Fetching by category is very similar to fetching the full list of products. The only
difference is that now the Seneca action will take a parameter to filter the products
by category.

Let's see the code:

/**
 * Fetch the list of products by category.
 */
seneca.add({area: "product", action: "fetch", criteria:
 "byCategory"}, function(args, done) {
 var products = this.make("products");
 products.list$({category: args.category}, done);
});

One of the first questions that most advanced developers will now have in their
mind is that isn't this a perfect scenario for an injection attack? Well, Seneca is smart
enough to prevent it, so we don't need to worry about it any more than avoid
concatenating strings with user input.

As you can see, the only significant difference is the parameter passed called
category, which gets delegated into Seneca data abstraction layer that will generate
the appropriate query, depending on the storage we use. This is extremely powerful
when talking about microservices. If you remember, in the previous chapters, we
always talked about coupling as if it was the root of all evils, and now we can assure
it is, and Seneca handles it in a very elegant way. In this case, the framework provides
a contract that the different storage plugins have to satisfy in order to work. In the
preceding example, list$ is part of this contract. If you use the Seneca storage wisely,
switching your microservice over to a new database engine (have you ever been
tempted to move a part of your data over MongoDB?) is a matter of configuration.

Fetching by ID
Fetching a product by ID is one of the most necessary methods, and it is also a tricky
one. Not tricky from the coding point of view, as shown in the following:

/**
 * Fetch a product by id.
 */
seneca.add({area: "product", action: "fetch", criteria: "byId"},
 function(args, done) {
 var product = this.make("products");
 product.load$(args.id, done);
});

Chapter 4

[83]

The tricky part is how id is generated. The generation of id is one of the contact
points with the database. Mongo creates a hash to represent a synthetic ID; whereas,
MySQL usually creates an integer that auto-increments to uniquely identify each
record. Given that, if we want to switch MongoDB to MySQL in one of our apps,
the first problem that we need to solve is how to map a hash that looks something
similar to the following into an ordinal number:

e777d434a849760a1303b7f9f989e33a

In 99% of the cases, this is fine, but we need to be careful, especially when storing
IDs as, if you recall from the previous chapters, the data should be local to each
microservice, which could imply that changing the data type of the ID of one entity,
requires changing the referenced ID in all the other databases.

Adding a product
Adding a product is trivial. We just need to create the data and save it in the database:

/**
 * Adds a product.
 */
seneca.add({area: "product", action: "add"}, function(args, done) {
 var products = this.make("products");
 products.category = args.category;
 products.name = args.name;
 products.description = args.description;
 products.category = args.category;
 products.price = args.price
 products.save$(function(err, product) {
 done(err, products.data$(false));
 });
});

In this method, we are using a helper from Seneca, products.data$(false). This
helper will allow us to retrieve the data of the entity without all the metadata about
namespace (zone), entity name, and base name that we are not interested in when
the data is returned to the calling method.

Writing Your First Microservice in Node.js

[84]

Removing a product
The removal of a product is usually done by id: We target the specific data that we
want to remove by the primary key and then remove it, as follows:

/**
 * Removes a product by id.
 */
seneca.add({area: "product", action: "remove"}, function(args,
 done) {
 var product = this.make("products");
 product.remove$(args.id, function(err) {
 done(err, null);
 });
});

In this case, we don't return anything aside from an error if something goes wrong,
so the endpoint that calls this action can assume that a non-errored response is
a success.

Editing a product
We need to provide an action to edit products. The code for doing that is as follows:

/**
 * Edits a product fetching it by id first.
 */
seneca.edit({area: "product", action: "edit"}, function(args,
 done) {
 seneca.act({area: "product", action: "fetch", criteria: "byId",
 id: args.id}, function(err, result) {
 result.data$(
 {
 name: args.name,
 category: args.category,
 description: args.description,
 price: args.price
 }
);
 result.save$(function(err, product){
 done(product.data$(false));
 });
 });
});

Chapter 4

[85]

Here is an interesting scenario. Before editing a product, we need to fetch it by ID,
and we have already done that. So, what we are doing here is relying on the already
existing action to retrieve a product by ID, copying the data across, and saving it.

This is a nice way for code reuse introduced by Seneca, where you can delegate a call
from one action to another and work in the wrapper action with the result.

Wiring everything up
As we agreed earlier, the product manager is going to have two faces: one that will
be exposed to other microservices using the Seneca transport over TCP and a second
one exposed through Express (a Node.js library to create web apps) in the REST way.

Let's wire everything together:

var plugin = function(options) {
 var seneca = this;

 /**
 * Fetch the list of all the products.
 */
 seneca.add({area: "product", action: "fetch"}, function(args,
 done) {
 var products = this.make("products");
 products.list$({}, done);
 });

 /**
 * Fetch the list of products by category.
 */
 seneca.add({area: "product", action: "fetch", criteria:
 "byCategory"}, function(args, done) {
 var products = this.make("products");
 products.list$({category: args.category}, done);
 });

 /**
 * Fetch a product by id.
 */
 seneca.add({area: "product", action: "fetch", criteria: "byId"},
 function(args, done) {
 var product = this.make("products");

Writing Your First Microservice in Node.js

[86]

 product.load$(args.id, done);
 });

 /**
 * Adds a product.
 */
 seneca.add({area: "product", action: "add"}, function(args,
 done) {
 var products = this.make("products");
 products.category = args.category;
 products.name = args.name;
 products.description = args.description;
 products.category = args.category;
 products.price = args.price
 products.save$(function(err, product) {
 done(err, products.data$(false));
 });
 });

 /**
 * Removes a product by id.
 */
 seneca.add({area: "product", action: "remove"}, function(args,
 done) {
 var product = this.make("products");
 product.remove$(args.id, function(err) {
 done(err, null);
 });
 });

 /**
 * Edits a product fetching it by id first.
 */
 seneca.add({area: "product", action: "edit"}, function(args,
 done) {
 seneca.act({area: "product", action: "fetch", criteria:
 "byId", id: args.id}, function(err, result) {
 result.data$(
 {
 name: args.name,
 category: args.category,
 description: args.description,
 price: args.price
 }
);

Chapter 4

[87]

 result.save$(function(err, product){
 done(err, product.data$(false));
 });
 });
 });
}
module.exports = plugin;

var seneca = require("seneca")();
seneca.use(plugin);
seneca.use("mongo-store", {
 name: "seneca",
 host: "127.0.0.1",
 port: "27017"
});

seneca.ready(function(err){

 seneca.act('role:web',{use:{
 prefix: '/products',
 pin: {area:'product',action:'*'},
 map:{
 fetch: {GET:true},
 edit: {GET:false,POST:true},
 delete: {GET: false, DELETE: true}
 }
 }});
 var express = require('express');
 var app = express();
 app.use(require("body-parser").json());

 // This is how you integrate Seneca with Express
 app.use(seneca.export('web'));

 app.listen(3000);

});

Now let's explain the code:

We have created a Seneca plugin. This plugin can be reused across different
microservices. This plugin contains all the definitions of methods needed by
our microservice that we have previously described.

Writing Your First Microservice in Node.js

[88]

The preceding code describes the following two sections:

• The first few lines connect to Mongo. In this case, we are specifying that
Mongo is a local database. We are doing that through the use of a plugin
called mongo-store—https://github.com/rjrodger/seneca-mongo-
store, written by Richard Rodger, the author of Seneca.

• The second part is new to us. It might sound familiar if you have used
JQuery before, but basically what the seneca.ready() callback is doing is
taking care of the fact that Seneca might not have connected to Mongo before
the calls start flowing into its API. The seneca.ready() callback is where the
code for integrating Express with Seneca lives.

The following is the package.json configuration of our app:

{
 "name": "Product Manager",
 "version": "1.0.0",
 "description": "Product Management sub-system",
 "main": "index.js",
 "keywords": [
 "microservices",
 "products"
],
 "author": "David Gonzalez",
 "license": "ISC",
 "dependencies": {
 "body-parser": "^1.14.1",
 "debug": "^2.2.0",
 "express": "^4.13.3",
 "seneca": "^0.8.0",
 "seneca-mongo-store": "^0.2.0",
 "type-is": "^1.6.10"
 }
}

Here we control all the libraries needed for our microservice to run, as well as
the configuration.

https://github.com/rjrodger/seneca-mongo-store
https://github.com/rjrodger/seneca-mongo-store

Chapter 4

[89]

Integrating with Express – how to create a
REST API
Integrating with Express is quite straightforward. Let's take a look at the code:

 seneca.act('role:web',{use:{
 prefix: '/products',
 pin: {area:'product',action:'*'},
 map:{
 fetch: {GET:true},
 edit: {PUT:true},
 delete: {GET: false, DELETE: true}
 }
 }});
 var express = require('express');
 var app = express();
 app.use(require("body-parser").json());

 // This is how you integrate Seneca with Express
 app.use(seneca.export('web'));

 app.listen(3000);

This code snippet, as we've seen in the preceding section, provides the following
three REST endpoints:

/products/fetch

/products/edit

/products/delete

Let's explain how.

First, what we do is tell Seneca to execute the role:web action, indicating the
configuration. This configuration specifies to use a /products prefix for all the URLs,
and it pins the action with a matching {area: "product", action: "*"} pattern.
This is also new for us, but it is a nice way to specify to Seneca that whatever action
it executes in the URL, it will have implicit area: "product" of the handler. This
means that /products/fetch endpoint will correspond to the {area: 'products',
action: 'fetch'} pattern. This could be a bit difficult, but once you get used to it,
it is actually really powerful. It does not force use to fully couple our actions with
our URLs by conventions.

Writing Your First Microservice in Node.js

[90]

In the configuration, the attribute map specifies the HTTP actions that can be
executed over an endpoint: fetch will allow GET, edit will allow PUT, and delete
will only allow DELETE. This way, we can control the semantics of the application.

Everything else is probably familiar to you. Create an Express app and specify using
the following two plugins:

• The JSON body parser
• The Seneca web plugin

This is all. Now, if we add a new action to our Seneca list of actions in order to
expose it through the API, the only thing that needs to be done is to modify the
map attribute to allow HTTP methods.

Although we have built a very simplistic microservice, it captures a big portion of the
common patterns that you find when creating a CRUD (Create Read Update Delete)
application. We have also created a small REST API out of a Seneca application with
little to no effort. All we need to do now is configure the infrastructure (MongoDB)
and we are ready to deploy our microservice.

The e-mailer – a common problem
E-mailing is something that every company needs to do. We need to communicate
with our customers in order to send notifications, bills, or registration e-mails.

In the companies where I've worked before, e-mailing always presented a problem
such as e-mails not being delivered, or being delivered twice, with the wrong content
to the wrong customer, and so on. It looks terrifying that something as simple as
sending an e-mail could be this complicated to manage.

In general, e-mail communication is the first candidate to write a microservice. Think
about it:

• E-mail does one thing
• E-mail does it well
• E-mail keeps its own data

It is also a good example of how the Conway's law kicks into our systems without
being noticed. We design our systems modeling the existing communication in our
company as we are constrained by it.

Chapter 4

[91]

How to send e-mails
Back to the basics. How do we send e-mails? I am not talking about which network
protocol we use for sending the e-mail or what are the minimum acceptable headers?

I am talking about what we need to send an e-mail from the business point of view:

• A title
• The content
• A destination address

That is everything. We could have gone far, talking about acknowledgements,
secure e-mail, BCCs, and so on. However, we are following the lean methodology:
start with the minimum viable product and build up from it until you achieve the
desired result.

I can't remember a project where the e-mail sending wasn't a controversial part. The
product chosen to deliver e-mails ends up tightly coupled to the system and it is
really hard to replace it seamlessly. However, microservices are here to rescue us.

Defining the interface
As I mentioned before, although it sounds easy, sending corporate e-mails could
end up being a mess. Therefore, the first thing we need to clear is our minimum
requirements:

• How do we render the e-mail?
 ° Does rendering the email belongs to the bound context of the

email manipulation?
 ° Do we create another microservice to render e-mails?
 ° Do we use a third party to manage the e-mails?

• Do we store the already sent e-mails for auditing purposes?

For this microservice, we are going to use Mandrill. Mandrill is a company that
allows us to send corporate e-mails, track the already sent e-mails, and create e-mail
templates that can be edited online.

Our microservice is going to look as shown in the following code:

var plugin = function(options) {
 var seneca = this;
 /**

Writing Your First Microservice in Node.js

[92]

 * Sends an email using a template email.
 */
 seneca.add({area: "email", action: "send", template: "*"},
 function(args, done) {
// TODO: More code to come.
 });

 /**
 * Sends an email including the content.
 */
 seneca.add({area: "email", action: "send"}, function(args, done) {
// TODO: More code to come.
 });
};

We have two patterns: one that makes use of templates and the other that sends the
content contained in the request.

As you can see, everything that we have defined here is information related to
e-mailing. There is no bleeding from the Mandrill terminology into what the other
microservices see in our e-mail sending. The only compromise that we are making is
the templating. We are delegating the template rendering to the e-mail sender, but it
is not a big deal, as even if we walk away from Mandrill, we will need to render the
content somehow.

We will come back to the code later.

Setting up Mandrill
Mandrill is fairly easy to use and shouldn't be a problem to set up. However, we are
going to use the test mode so that we can assure that the e-mails are not going to be
delivered and we can access the API for all our needs.

The first thing we need to do is create an account on Mandrill. Just register with
your e-mail at https://mandrillapp.com, and you should be able to access to it,
as shown in the following screenshot:

https://mandrillapp.com

Chapter 4

[93]

Now we have created an account that we need to enter into the test mode. In order to
do it, just click on your e-mail at the top-right corner and select the Turn on the test
mode option from the menu. The Mandrill menu on the left will turn orange now.

Next, we need to create an API key. This key is the login information to be used
by the Mandrill API. Just click on Settings and SMTP & API Info and add a new
key (don't forget the checkbox to mark the key as test key). It should look like the
following screenshot now:

Writing Your First Microservice in Node.js

[94]

The key is everything you need for now. Let's test the API:

var mandrill = require("mandrill-api/mandrill");
var mandrillClient = new mandrill.Mandrill("<YOUR-KEY-HERE>");

mandrillClient.users.info({}, function(result){
 console.log(result);
}, function(e){
 console.log(e);
});

With these few lines, we have managed to test that Mandrill is up and running and
we have a valid key. The output of this program should be something very similar to
the following JSON:

Hands on – integrating Mandrill in your
microservice
Everything is ready now. We have a working key and our interface. The only thing
left is to create the code. We are going to use a small part of the Mandrill API, but
if you want to make use of other features, you can find a better description here:
https://mandrillapp.com/api/docs/

Let's take a look at the following code:

/**
 * Sends an email including the content.
 */

Chapter 4

[95]

 seneca.add({area: "email", action: "send"}, function(args, done)
 {
 console.log(args);
 var message = {
 "html": args.content,
 "subject": args.subject,
 "to": [{
 "email": args.to,
 "name": args.toName,
 "type": "to"
 }],
 "from_email": "info@micromerce.com",
 "from_name": "Micromerce"
 }
 mandrillClient.messages.send({"message": message},
 function(result) {
 done(null, {status: result.status});
 }, function(e) {
 done({code: e.name}, null);
 });
 });

This first method sends messages without using a template. We just get the HTML
content (and a few other parameters) from our application and deliver it through
Mandrill.

As you can see, we only have two contact points with the outer world: the
parameters passed in and the return of our actions. Both of them have a clear
contract that has nothing to do with Mandrill, but what about the data?

At the error, we are returning e.name, assuming that it is a code. At some point,
someone will end up branching the flow depending on this error code. Here, we
have something called data coupling; our software components don't depend on the
contract, but they do depend on the content sent across.

Now, the question is: how do we fix it? We can't. At least not in an easy way. We
need to assume that our microservice is not perfect, it has a flaw. If we switch
provider for e-mailing, we are going to need to revisit the calling code to check
potential couplings.

Writing Your First Microservice in Node.js

[96]

In the world of software, in every single project that I've worked on before, there
was always a big push trying to make the code as generic as possible, trying to guess
the future, which usually could be as bad as assuming that your microservice won't
be perfect. There is something that always attracted my attention: we put a large
amount of effort in to perfection, but we pretty much ignore the fact that we are
going to fail and we do can nothing about it. Software fails often and we need to be
prepared for that.

Later, we will see a pattern to factor human nature into the microservices: the circuit
breaker.

Don't be surprised if Mandrill rejects the e-mails due to the unsigned reason. This is
due to the fact that they couldn't validate the domain from where we are sending
the e-mail (in this case, a dummy domain that does not exist). If we want Mandrill to
actually process the e-mails (even though we are in test mode), we just need to verify
our domain by adding some configuration to it.

More information can be found in the Mandrill documentation here:
https://mandrillapp.com/api/docs/

The second method to send e-mails is send an e-mail from a template. In this case,
Mandrill provides a flexible API:

• It provides per-recipient variables in case we send the e-mail to a list
of customers

• It has global variables
• It allows content replacement (we can replace a full section)

For convenience, we are going to just use global variables as we are limited on space
in this book.

Let's take a look at the following code:

 /**
 * Sends an email using a template email.
 */
 seneca.add({area: "email", action: "send", template: "*"},
 function(args, done) {
 console.log("sending");
 var message = {
 "subject": args.subject,
 "to": [{
 "email": args.to,

Chapter 4

[97]

 "name": args.toName,
 "type": "to"
 }],
 "from_email": "info@micromerce.com",
 "from_name": "Micromerce",
 "global_merge_vars": args.vars,
 }
 mandrillClient.messages.sendTemplate(
 {"template_name": args.template, "template_content": {},
 "message": message},
 function(result) {
 done(null, {status: result.status});
 }, function(e) {
 done({code: e.name}, null);
 });
 });

Now we can create our templates in Mandrill (and let someone else to manage
them) and we are able to use them to send e-mails. Again, we are specializing. Our
system specializes in sending e-mails and you leave the creation of the e-mails to
someone else (maybe someone from the marketing team who knows how to talk to
customers).

Let's analyze this microservice:

• Data is stored locally: Not really (it is stored in Mandrill), but from the
design point of view, it is

• Our microservice is well cohesioned: It sends only e-mails; it does one thing,
and does it well

• The size of the microservice is correct: It can be understood in a few minutes,
it does not have unnecessary abstractions and can be rewritten fairly easily

When we talked about the SOLID design principles earlier, we always skipped L,
which stands for Liskov Substitution. Basically, this means that the software has
to be semantically correct. For example, if we write an object-oriented program that
handles one abstract class, the program has to be able to handle all the subclasses.

Coming back to Node.js, if our service is able to handle sending a plain e-mail, it
should be easy to extend and add capabilities without modifying the existing ones.

Think about it from the day-to-day production operations point of view; if a new
feature is added to your system, the last thing you want to do is retest the existing
functionalities or even worse, deliver the feature to production, introducing a bug
that no one was aware of.

Writing Your First Microservice in Node.js

[98]

Let's create a use case. We want to send the same e-mail to two recipients. Although
Mandrill API allows the calling code to do it, we haven't factored in a potential CC.

Therefore, we are going to add a new action in Seneca that allows us to do it,
as follows:

 /**
 * Sends an email including the content.
 */
 seneca.add({area: "email", action: "send", cc: "*"},
 function(args, done) {
 var message = {
 "html": args.content,
 "subject": args.subject,
 "to": [{
 "email": args.to,
 "name": args.toName,
 "type": "to"
 },{
 "email": args.cc,
 "name": args.ccName,
 "type": "cc"
 }],
 "from_email": "info@micromerce.com",
 "from_name": "Micromerce"
 }
 mandrillClient.messages.send({"message": message},
 function(result) {
 done(null, {status: result.status});
 }, function(e) {
 done({code: e.name}, null);
 });
 });

We have instructed Seneca to take the calls that include cc in the list of parameters
and send them using a Mandrill CC in the send API. If we want to use it, the
following signature of the calling code will change:

seneca.act({area: "email", action: "send", subject: "The Subject", to:
"test@test.com", toName: "Test Testingtong"}, function(err, result){
// More code here
});

Chapter 4

[99]

The signature will change to the following code:

seneca.act({area: "email", action: "send", subject: "The Subject",
to: "test@test.com", toName: "Test Testingtong", cc: "test2@test.com",
ccName: "Test 2"}, function(err, result){
// More code here
});

If you remember correctly, the pattern matching tries to match the most concrete
input so that if an action matches with more parameters than another one, the call
will be directed to it.

Here is where Seneca shines: We can call it polymorphism of actions, as we
can define different versions of the same action with different parameters that
end up doing slightly different things and enabling us to reutilize the code if we
are 100% sure that this is the right thing to do (remember, microservices enforce
the share-nothing approach: repeating the code might not be as bad as coupling
two actions).

Here is the package.json for the e-mailer microservice:

{
 "name": "emailing",
 "version": "1.0.0",
 "description": "Emailing sub-system",
 "main": "index.js",
 "keywords": [
 "microservices",
 "emailing"
],
 "author": "David Gonzalez",
 "license": "ISC",
 "dependencies": {
 "mandrill-api": "^1.0.45",
 "seneca": "^0.8.0"
 }
}

The fallback strategy
When you design a system, usually we think about replaceability of the existing
components; for example, when using a persistence technology in Java, we tend to
lean towards standards (JPA) so that we can replace the underlying implementation
without too much effort.

Writing Your First Microservice in Node.js

[100]

Microservices take the same approach, but they isolate the problem instead of
working towards an easy replaceability. If you read the preceding code, inside the
Seneca actions, we have done nothing to hide the fact that we are using Mandrill to
send the e-mails.

As I mentioned before, e-mailing is something that, although seems simple, always
ends up giving problems.

Imagine that we want to replace Mandrill for a plain SMTP server such as Gmail. We
don't need to do anything special, we just change the implementation and roll out
the new version of our microservice.

The process is as simple as applying the following code:

var nodemailer = require('nodemailer');
var seneca = require("seneca")();
var transporter = nodemailer.createTransport({
 service: 'Gmail',
 auth: {
 user: 'info@micromerce.com',
 pass: 'verysecurepassword'
 }
});

/**
 * Sends an email including the content.
 */
seneca.add({area: "email", action: "send"}, function(args, done) {
 var mailOptions = {
 from: 'Micromerce Info <info@micromerce.com>',
 to: args.to,
 subject: args.subject,
 html: args.body
 };
 transporter.sendMail(mailOptions, function(error, info){
 if(error){
 done({code: e}, null);
 }
 done(null, {status: "sent"});
 });
});

Chapter 4

[101]

For the outer world, our simplest version of the e-mail sender is now using SMTP
through Gmail to deliver our e-mails.

As we will see later in the book, delivering a new version of the same interface
in a microservice network is fairly easy; as long as we respect the interface, the
implementation should be irrelevant.

We could even roll out one server with this new version and send some traffic to it
in order to validate our implementation without affecting all the customers (in other
words, contain the failure).

We have seen how to write an e-mail sender in this section. We have worked
through a few examples on how our microservice can be adapted quickly for new
requirements as soon as the business requires new capabilities or we decide that our
vendor is not good enough to cope with our technical requirements.

The order manager
The order manager is a microservice that processes the orders that the customer
places through the UI. As you probably remember, we are not going to create a
sophisticated single-page application with a modern visual framework, as it is out of
the scope of this book, but we are going to provide the JSON interface in order to be
able to build the front end later.

Order manager introduces an interesting problem: this microservice needs access
to the information about products, such as name, price, availability, and so on.
However, it is stored in the product manager microservice, so how do we do that?

Well, the answer for this question might look simple, but requires a bit of thinking.

Defining the microservice – how to gather
non-local data
Our microservice will need to do the following three things:

• Recover orders
• Create orders
• Delete existing orders

Writing Your First Microservice in Node.js

[102]

When recovering an order, the option is going to be simple. Recover the order by
the primary key. We could extend it to recover orders by different criteria, such as
price, date, and so on, but we are going to keep it simple as we want to focus on
microservices.

When deleting existing orders, the option is also clear: use the ID to delete orders.
Again, we could choose a more advanced deletion criteria, but we want to keep
it simple.

The problem arises when we are trying to create orders. Creating an order in our
small microservice architecture means sending an e-mail to the customer, specifying
that we are processing their order, along with the details of the order, as follows:

• Number of products
• Price per product
• Total price
• Order ID (in case the customer needs to troubleshoot problems with

the order)

How do we recover the product details?

If you see our diagram shown in the Micromerce – the big picture section of this
chapter, order manager will only be called from the UI, which will be responsible
to recover the product name, its price, and so on. We could adopt the following two
strategies here:

• Order manager calls product manager and gets the details
• UI calls product manager and delegates the data to the order manager

Both options are totally valid, but in this case, we are going for the second: UI will
gather the information needed to generate an order and it will only call the order
manager when all the data required is available.

Now to answer the question: why?

Chapter 4

[103]

A simple reason: failure tolerance. Let's take a look at the following sequence
diagram of the two options:

Writing Your First Microservice in Node.js

[104]

The diagram for the second option is shown as follows:

In the first view, there is a big difference: the depth of the call; whereas in the first
example, we have two levels of depth (UI calls the order manager, which calls the
product manager). In the second example, we have only one level of depth. There are
a few immediate effects in our architecture, as follows:

• When something goes wrong, if we only have one level of depth, we don't
need to check in too many places.

• We are more resilient. If something goes wrong, it is the UI of the
microservice that notices it, returning the appropriate HTTP code, in this
case, without having to translate the errors that occurred a few levels above
the client-facing microservice.

• It is easier to deploy and test. Not much easier, but we don't need to juggle
around, we can see straight away if the product manager is reached from the
UI, instead of having to go through the order manager.

Chapter 4

[105]

The fact that we are using this architecture instead of the two-level depth does
not mean that it isn't appropriate for another situation: the network topology is
something that you need to plan ahead if you are creating a microservices-oriented
architecture, as it is one of the hardest aspects to change.

In some cases, if we want to be extremely flexible, we can use a messaging queue
with publisher/subscriber technology where our microservices can subscribe to
different types of messages and emit others to be consumed by a different service,
but it could complicate the infrastructure that we need to put in place to avoid single
point of failures.

The order manager – the code
Let's take a look at the code for the order manager:

var plugin = function(options) {
 var seneca = this;

 seneca.add({area: "orders", action: "fetch"}, function(args,
 done) {
 var orders = this.make("orders");
 orders.list$({id: args.id}, done);
 });

 seneca.add({area: "orders", action: "delete"}, function(args,
 done) {
 var orders = this.make("orders");
 orders.remove$({id: args.id}, function(err) {
 done(err, null);
 });
 });
}
module.exports = plugin;

As you can see, there is nothing complicated about the code. The only interesting
point is the missing code from the create action.

Calling remote services
Until now, we have assumed that all our microservices run in the same machine, but
that is far from ideal. In the real world, microservices are distributed and we need to
use some sort of transport protocol to carry the message from one service to another.

Seneca, as well as nearForm, the company behind Seneca, has sorted this problem for
us and the open source community around it.

Writing Your First Microservice in Node.js

[106]

As a modular system, Seneca has embedded the concept of plugin. By default,
Seneca comes with a bundled plugin to use TCP as the protocol, but it is not hard to
create a new transport plugin.

While writing this book, I created one by myself: https://github.
com/dgonzalez/seneca-nservicebus-transport/

With this plugin, we could route the Seneca messages through NServiceBus
(a .NET-based Enterprise Bus), changing the configuration of our client and server.

Let's see how to configure Seneca to point to a different machine:

var senecaEmailer = require("seneca")().client({host: "192.168.0.2",
port: 8080});

By default, Seneca will use the default plugin for transport, which as we've seen in
Chapter 2, Microservices in Node.js – Seneca and PM2 Alternatives, is tcp, and we have
specified it to point to the 192.168.0.2 host on the 8080 port.

As simple as that, from now on, when we execute an act command on senecaEmailer,
the transport will send the message across to the e-mailer and receives the response.

Let's see the rest of the code:

 seneca.add({area: "orders", action: "create"}, function(args,
 done) {
 var products = args.products;
 var total = 0.0;
 products.forEach(function(product){
 total += product.price;
 });
 var orders = this.make("orders");
 orders.total = total;
 orders.customer_email = args.email;
 orders.customer_name = args.name;
 orders.save$(function(err, order) {
 var pattern = {
 area: "email",
 action: "send",
 template: "new_order",
 to: args.email,
 toName: args.name,
 vars: {

https://github.com/dgonzalez/seneca-nservicebus-transport/
https://github.com/dgonzalez/seneca-nservicebus-transport/

Chapter 4

[107]

 // ... vars for rendering the template including the
 products ...
 }
 }
 senecaEmailer.act(pattern, done);
 });
 });

As you can see, we are receiving a list of products with all the data needed and
passing them to the e-mailer to render the e-mail.

If we change the host where the e-mailer lives, the only change that we need to do
here is the configuration of the senecaEmailer variable.

Even if we change the nature of the channel (we could potentially even write a
plugin to send the data over Twitter, for example), the plugin should look after
the particularities of it and be transparent for the application.

Resilience over perfection
In the example from the preceding section, we built a microservice that calls another
microservice in order to resolve the call that it receives. However, the following
points need to be kept in mind:

• What happens if the e-mailer is down?
• What happens if the configuration is wrong and the e-mailer is not working

on the correct port?

We could be throwing what ifs for few pages.

Humans are imperfect and so are the things that they build, and software is not an
exception. Humans are also bad at recognizing the potential problems in logical
flows, and software tends to be a complex system.

In other languages, playing with exceptions is almost something normal, but in
JavaScript, exceptions are a big deal:

• If an exception bubbles out in a web app in Java, it kills the current stack of
calls and Tomcat (or the container that you use) returns an error to the client

• If an exception bubbles out in a Node.js app, the application is killed as we
only have one thread executing the app

As you can see, pretty much every single callback in Node.js has a first parameter
that is an error.

Writing Your First Microservice in Node.js

[108]

When talking about microservices, this error is especially important. You want
to be resilient. The fact that an e-mail has failed sending does not mean that the
order cannot be processed, but the e-mail could be manually sent later by someone
reprocessing the data. This is what we call eventual consistency; we factor into our
system the fact that at some point our system is going to crash.

In this case, if there is a problem sending the e-mail, but we could store the order in
the database, the calling code, in this case the UI, should have enough information to
decide whether the customer gets a fatal message or just a warning:

Your order is ready to be processed, however it might take us two days to send you the e-mail

with the order details. Thanks for your patience.

Usually, the fact that our application will keep working even if we cannot complete
a request, it is usually more business than technical decision. This is an important
detail, as when building microservices, Conway's law is pushing us, the technical
people, to model the existing business process and partial success maps perfectly to
the human nature. If you can't complete a task, create a reminder in Evernote (or a
similar tool) and come back to it once the blocker is resolved.

This reads much better than the following:

Something happened about something, but we can't tell you more (which is what my mind
reads sometimes when I get a general failure in some websites).

We call this way of handling errors system degradation: it might not be 100%
functional, but it will still work even though its few features are not available,
instead of a general failure.

If you think for a second, how many times a web service call has rolled back a full
transaction in your big corporate system only because it couldn't reach a third-party
service that might not even be important?

In this section, we built a microservice that uses another microservice to resolve a
request from a customer: order manager uses e-mailer to complete the request. We
have also talked about resilience and how important it is in our architecture in order
to provide the best service.

The UI – API aggregation
Until now, we have built independent microservices. They had a specific purpose
and dealt with one specific part of our system: e-mail sending, product management,
and order processing, but now we are building a microservice whose only purpose is
to facilitate the communication between microservices.

Chapter 4

[109]

Now we are going to build a microservice that interacts with others and is the
front-facing façade to the customer.

When I was planning the contents of this chapter, a service like this one wasn't in it.
However, after thinking about it, this chapter wouldn't have been the same without
showing a few concepts around API aggregation that are fairly easy to show in a
frontend microservice.

Need for frontend microservice
Think about scalability. When dealing with HTTP traffic, there is a pyramid of traffic.
There are more hits in the frontend than in the backend. Usually, in order to reach
the backend, the frontend needs to process the following few requests from the
frontend:

• Read a form
• Validate it
• Manage the PRG pattern (https://en.wikipedia.org/wiki/Post/

Redirect/Get)

As you can see, there is a lot of logic that needs to be processed by the frontend, so
that it is not hard to see capacity problems if the software is busy. If we are using a
microservice, and we are using it in the right way, scaling up or down should be an
automatic process that can be triggered with a couple of clicks (or commands).

The code
Until now, we have pretty much always tested the code in a single server.
This is fine for testing, but when we are building microservices, we want them
to be distributed. Therefore, in order to achieve it, we need to indicate to Seneca
how to reach the services:

var senecaEmailer = require("seneca")().client({
 host: "192.168.0.2",
 port: 8080
});
var senecaProductManager = require("seneca")().client({
 host: "192.168.0.3",
 port: 8080
});
var senecaOrderProcessor = require("seneca")().client({
 host: "192.168.0.4",
 port: 8080
});

https://en.wikipedia.org/wiki/Post/Redirect/Get
https://en.wikipedia.org/wiki/Post/Redirect/Get

Writing Your First Microservice in Node.js

[110]

What we have done is create three Seneca instances. They are like communication
pipes between servers.

Let's explain the code:

Seneca, by default, uses the transport plugin TCP. It means that Seneca
will be listening to the /act URL on the server. As an example, when
we create senecaEmailer, the URL where Seneca will be pointing to is
http://192.168.0.2:8080/act.

We can actually verify it with curl. If we execute the following command line,
replacing <valid Seneca pattern> by a valid Seneca command, we should get a
response from the server in the JSON format, which would be the second parameter
in the done function for the action:

curl -d '<valid Seneca pattern>' -v http://192.168.0.2:8080/act

Seneca's default transport plugin is TCP. If we don't
specify any other, Seneca will use it to reach other servers
and listen to calls.

Let's see an easy example:

var seneca = require("seneca")();
seneca.add({cmd: "test"}, function(args, done) {
 done(null, {response: "Hello World!"});
});

seneca.listen({port: 3000});

If we run this program, we can see the following output from the terminal:

It means that Seneca is listening to the port 3000. Let's test it:

curl -d '{"cmd": "test"}' -v http://127.0.0.1:3000/act

Chapter 4

[111]

This should print something very similar to the following code in the terminal:

The preceding code is the TCP/IP dialog between our terminal and Seneca server
with the result of the response in the last line.

So, what we achieved earlier on having three different instances of Seneca is
configuring our network of microservices; Seneca will transport the messages
across the network for us.

Writing Your First Microservice in Node.js

[112]

The following flow diagram describes how a single API can hide multiple Seneca
servers in the backend with different microservices (different Seneca instances,
basically):

Now, let's take a look at the skeleton of the microservice:

var express = require("express");
var bodyParser = require('body-parser');
var senecaEmailer = require("seneca")().client({
 host: "192.168.0.2",
 port: 8080
});
var senecaProductManager = require("seneca")().client({
 host: "192.168.0.3",
 port: 8080
});
var senecaOrderProcessor = require("seneca")().client({
 host: "192.168.0.4",
 port: 8080
});

function api(options) {
 var seneca = this;

 /**
 * Gets the full list of products

Chapter 4

[113]

 */
 seneca.add({area: "ui", action: "products"}, function(args,
 done) {
 // More code to come
 });
 /**
 * Get a product by id
 */
 seneca.add({area: "ui", action: "productbyid"}, function(args,
 done) {
 // More code to come
 });

 /**
 * Creates an order
 */
 seneca.add({area: "ui", action: "createorder"}, function(args,
 done) {
 // More code to come
 });

 this.add("init:api", function(msg, respond){
 seneca.act('role:web',{ use: {
 prefix: '/api',
 pin: 'area:ui,action:*',
 map: {
 products: {GET:true}
 productbyid: {GET:true, suffix:'/:id'}
 createorder: {POST:true}
 }
 }}, respond)
 });
}
module.exports = api;
var seneca = require("seneca")();
seneca.use(api);

var app = require("express")();
app.use(require("body-parser").json());
app.use(seneca.export("web"));
app.listen(3000);

Writing Your First Microservice in Node.js

[114]

We have actually left the functionality that calls other microservices for later
discussion. Now we are going to focus on how the code is articulated:

• We are creating a new plugin. The plugin is called api (the name of the
function for wrapping the plugin is api).

• The plugin has to perform the following three actions:
 ° List all the products
 ° Get a product by ID
 ° Create an order

• These three actions will call to two different microservices: Product Manager
and Order Manager. We will come back to this topic later.

Seneca can be seamlessly integrated with Express in order to
provide web capabilities to Seneca microservices.

Until here, everything is well known, but what about the initialization function
of the plugin?

At first look, it looks like dark magic:

 this.add("init:api", function(msg, respond){
 seneca.act('role:web',{ use: {
 prefix: '/api',
 pin: 'area:ui,action:*',
 map: {
 products: {GET:true}
 productbyid: {GET:true, suffix:'/:id'}
 createorder: {POST:true}
 }
 }}, respond)
 });

Let's explain it:

1. Seneca will call the init: <plugin-name> action in order to initialize
the plugin.

2. Through the prefix argument, we are listening to URLs under the
/api path.

Chapter 4

[115]

3. We are instructing Seneca to map the URLs to action by pinning a base
common argument. In this case, all our seneca.add(..) contains an argument
called area with the ui value. We are also asking Seneca to route calls that
contain the action argument (no matter the value, that is why we use the *) so
that it would ignore calls that don't specify the action argument.

The following argument (map) specifies the methods allowed in the matching.

How is the argument matching done?

The area argument is implicit as we have pinned it with the ui value.

The action argument needs to be present.

The URL must start with /api as we specified a prefix.

So, with this information, /api/products will correspond to the {area: "ui",
action: "products"} action. In the same way, /api/createorder will correspond
to the {area: "ui", action:"createorder"} action.

The Productbyid argument is a bit special.

The Seneca pin keyword is used to assume that the calling code
has a pair of argument-value so that it makes the code easier to
understand, but be careful, implicit values can have bad effects to
the readability.

Now, although it is not simple, this looks much easier.

Let's go back to the Seneca actions that are going to provide the functionality:

 /**
 * Gets the full list of products.
 */
 seneca.add({area: "ui", action: "products"}, function(args,
 done) {
 senecaProductManager.act({area: "product", action: "fetch"},
 function(err, result) {
 done(err, result);
 });
 });

 /**
 * Get a product by id.
 */

Writing Your First Microservice in Node.js

[116]

 seneca.add({area: "ui", action: "productbyid"}, function(args,
 done) {
 senecaProductManager.act({area: "product", action: "fetch",
 criteria: "byId", id: args.id}, function(err, result) {
 done(err, result);
 });
 });

 /**
 * Creates an order to buy a single prodct.
 */
 seneca.add({area: "ui", action: "createorder"}, function(args,
 done) {
 senecaProductManager.act({area: "product", action: "fetch",
 criteria: "byId", id: args.id}, function(err, product) {
 if(err) done(err, null);
 senecaOrderProcessor.act(area: "orders", action: "create",
 products: [product], email: args.email, name: args.name,
 function(err, order) {
 done(err, order);
 });
 });
 });

Warning! In the services written in this chapter, there is no data
validation performed in order to make the concepts around the
design of microservices clear. You should always validate the
incoming data from untrusted systems (such as customers input).

We are actually using everything that we've discussed in the previous chapters, but
we are taking a step forward in the Seneca semantics.

We have created an API with a very limited set of functionalities, but through them,
we are aggregating the functionality of different microservices into one.

A detail to take into account is the amount of nested calls in the create order action
(the last one). In this case, we are creating orders out of only a product to simplify
the code, but if we are nesting too many calls for non-blocking actions waiting for
the response in a callback, we will end up having a pyramid of code that makes your
program difficult to read.

The solution for it would be to refactor how the data is fetched and/or reorganize
the anonymous functions, avoiding inlining.

Chapter 4

[117]

Another solution is the usage of promises libraries such as Q or Bluebird (http://
bluebirdjs.com/) that allow us to chain the flow of the methods through promises:

myFunction().then(function() {
// Code here
}).then(function(){
// More code here
}).catch(function(error){
// Handle the error.
});

In this way, instead of building a sea of callbacks, we are nicely chaining the calls to
the methods and adding error handlers to avoid the exceptions from bubbling up.

As you can see, we are using the UI as a central point of communication for all the
microservices, except for the mailer, and we have a really good reason for it.

Service degradation – when the failure is not
a disaster
Microservices are great, and we have demonstrated that by writing a small system in
a few hundred lines of code that is fairly easy to understand.

They are also great as they allow us to react in the event of a failure:

• What happens if the e-mailer microservice stops working?
• What happens if the order processor stops working?
• Can we recover from the situation?
• What does the customer see?

These questions, on a monolithic system, are nonsense. The e-mailer probably would
be a part of the application. The failure on sending an e-mail implies a general error,
unless it is specifically handled. Same with the order processor.

However, what about our microservices-oriented architecture?

The fact that the e-mailer has failed to deliver a few e-mails does not prevent the
orders from being processed, even though the customers aren't getting the e-mails.
This is what we call performance or service degradation; the system might be slower,
but some functionalities will still work.

http://bluebirdjs.com/
http://bluebirdjs.com/

Writing Your First Microservice in Node.js

[118]

Service degradation is the ability of a system to lose a
feature without suffering a general failure.

What about the order manager? Well...we can still make the products-related calls
work, but we won't be able to process any order…which might still be a good thing.

The fact that the order manager is responsible for sending the e-mail instead of
the UI microservice is not coincidental; we only want to send the e-mail with the
acknowledgement of a sale on the success event, and we don't want to send the
success e-mail in any other case.

Circuit breakers
In the previous section, we talked about system degradation in the event of a failure,
but everybody who has worked in IT for a number of years knows that a system
does not fail suddenly in most cases of failures.

The most common event is a timeout; the server is busy for a period of time, which
makes the request to fail, giving our customers a terrible user experience.

How can we solve this particular problem?

We can solve this problem with a circuit breaker, as shown in the following image:

Chapter 4

[119]

A circuit breaker is a mechanism to prevent requests from reaching an unstable
server that could cause our application to misbehave.

As you can see in the preceding schema, the circuit breaker has the following
three statuses:

• Closed: The circuit is closed; the requests reach their destination.
• Open: The circuit is open; the requests don't get past the circuit breaker

and the client gets an error. The system will retry the communication after
a time period.

• HalfOpen: The circuit tests the service again, and if there is no error reaching
it, the requests can flow again and the circuit breaker is Closed.

With this simple mechanism, we can prevent the errors to cascade through our
system, avoiding catastrophic failures.

Ideally, the circuit breaker should be asynchronous. This means that even if there
are no requests, every few seconds/milliseconds, the system should be trying to
re-establish the connection to the faulty service in order to continue the normal
operation.

Failure is a common denominator in the human
nature: better be prepared for it.

Circuit breakers are also an ideal place to alert the support engineers. Depending on
the nature of our system, the fact that a given service cannot be reached could mean
a serious issue. Can you imagine a bank that is unable to reach the SMS service to
send two-factor authentication codes? No matter how hard we try, it will always
happen at some point. So, be prepared for it.

There is a very inspiring article from Martin Fowler (one of the big names
in microservices) about circuit breakers at http://martinfowler.
com/bliki/CircuitBreaker.html.

http://martinfowler.com/bliki/CircuitBreaker.html
http://martinfowler.com/bliki/CircuitBreaker.html

Writing Your First Microservice in Node.js

[120]

Seneca – a simple puzzle that makes our lives
easier
Seneca is great. It enables the developers to take a simple and small idea and
translate it into a piece of code with a connection point that does not make any
assumption, just facts. An action has a clear input and provides you the interface
to give an answer for it through a callback.

How many times have you found your team struggling with the class structure of an
application just to reuse code in a nice way?

Seneca focuses on simplicity. The fact that we are not modeling objects, but just parts
of systems using small portions of code that are extremely cohesive and idempotent
to objects makes our life much easier.

Another way how Seneca makes our life easy is through the plugability.

If you review the code that we have been writing in this book, the first thing that will
be spotted is how convenient the plugins are.

They provide the right level of encapsulation for a bunch of actions (Does it look
similar to a class?) that are somehow related to each other.

I always try not to over-engineer solutions. It is really easy to fall into premature
abstraction, preparing the code for a future that we don't know whether it it is going
to happen in the majority of the cases.

We don't realize how long we spend maintaining features that have been overdesigned
and need to be tested every time someone changes the code around them.

Seneca avoids (or at least discourages) this type of designs. Think about Seneca
actions as a small piece of paper (like a post-it), where you need to write what
happened last week. You need to be smart about what to fit in there, and possibly,
split it into another post-it if the content gets to dense.

Another point where Seneca is good is in configurability. As we have seen before,
Seneca comes with a number of integrations for data storage and transport.

Chapter 4

[121]

An important side of Seneca is the transport protocol. As we know by now, the
default transport is carried over TCP, but can we use a message queue to do it? The
structure is shown as follows:

Yes, we can. It is already done and maintained.

The following URL is a plugin for Seneca that allows it to send messages
over RabbitMQ instead of HTTP:
https://github.com/senecajs/seneca-rabbitmq-transport

If you look into the code of the plugin (it looks really complex, but it is not), you can
spot where the magic happens in few seconds:

 seneca.add({role: 'transport', hook: 'listen', type: 'rabbitmq'},
hook_listen_rabbitmq)
 seneca.add({role: 'transport', hook: 'client', type: 'rabbitmq'},
hook_client_rabbitmq)

Seneca is using Seneca actions to delegate the transport of the message. Although it
looks a bit recursive, it is brilliant!

Once you understand how Seneca and the transport protocol chosen work, you are
immediately qualified to write a transport plugin for Seneca.

When I started learning about Seneca in order to write this
book, I also wrote a transport plugin to use NServiceBus
(http://particular.net/).

NServiceBus is an interesting idea, it allows you to connect a number of storages and
AMPQ-compliant systems and use them as clients. For example, we could be writing
messages in a SQL Server table and consuming them from a queue once they get
routed through NServiceBus, having immediate auditing capabilities on the history
of the messages.

With such flexibility, we could potentially write a plugin that uses pretty much
anything as a transport protocol.

https://github.com/senecajs/seneca-rabbitmq-transport
http://particular.net/

Writing Your First Microservice in Node.js

[122]

Seneca and promises
All our code from the previous chapters is relying on callbacks. Callbacks are good
as far as your code does not nest them on more than three levels.

However, there is an even better way of managing the asynchronous nature of
JavaScript: promises.

Take a look at the following code:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>promise demo</title>
<script src="https://code.jquery.com/jquery-1.10.2.js"></script>
</head>
<body>

<button>Go</button>
<p>Ready...</p>
<div></div>
<div></div>
<div></div>
<div></div>

<script>
var effect = function() {
 return $("div").fadeIn(800).delay(1200).fadeOut();
};

$("button").on("click", function() {
 $("p").append(" Started... ");

 $.when(effect()).done(function() {
 $("p").append(" Finished! ");
 });
});
</script>

</body>
</html>

The preceding code is an example of the JQuery fragment using promises.

Chapter 4

[123]

A promise, by its definition is:

A declaration or assurance that one will do something or that a particular thing will happen.

That is exactly it. If you see the preceding code, $.when, returns a promise. We don't
know how long the effect function will take, but we can guarantee that once it is
ready, the function inside of done will be executed. It looks very similar to callbacks,
but take a look at the following code:

callhttp(url1, data1).then(function(result1) {
 // result1 is available here
 return callhttp(url2, data2);
}).then(function(result2) {
 // only result2 is available here
 return callhttp(url3, data3);
}).then(function(result3) {
 // all three are done now, final result is in result3
});

Don't try to execute it, it is just a hypothetical example, but what we are doing in
there is chain promises; and that makes the code vertical instead of ending up in a
pyramid-shaped program, which is a lot harder to read, as shown in the following
diagram:

Writing Your First Microservice in Node.js

[124]

Seneca, by default, is not a promise-oriented framework, but (there is always a but)
using Bluebird, one of the most famous promises libraries in JavaScript, we can
promisify Seneca, as follows:

var Promise = require('bluebird');
var seneca = require('seneca')();

// Promisify the .act() method; to learn more about this technique
 see:
// http://bluebirdjs.com/docs/features.html#promisification-on-
 steroids
var act = Promise.promisify(seneca.act, seneca);

// Return no error and a success message to illustrate a resolved
 promise
seneca.add({cmd: 'resolve'}, function (args, done) {
 done(null, {message: "Yay, I've been resolved!"});
});

// Return an error to force a rejected promise
seneca.add({cmd: 'reject'}, function (args, done) {
 done(new Error("D'oh! I've been rejected."));
});

// Use the new promisified act() with no callback
act({cmd: 'resolve'})
 .then(function (result) {
 // result will be {message: "Yay, I've been resolved!"} since
 // its guaranteed to resolve
 })
 .catch(function (err) {
 // Catch any error as usual if it was rejected
 });

act({cmd: 'reject'})
 .then(function (result) {
 // Never reaches here since we throw an error on purpose
 })
 .catch(function (err) {
 // err will be set with message "D'oh! I've been rejected."
 });

There are two important details in the preceding code:

var act = Promise.promisify(seneca.act, seneca);

Chapter 4

[125]

This creates a promisified version of the act function and its use, as follows:

act({cmd: 'reject'})
 .then(function (result) {
 // Never reaches here since we throw an error on purpose
 })
 .catch(function (err) {
 // err will be set with message "D'oh! I've been rejected."
 });

An important detail in this last fragment; instead of receiving a callback with the
following two parameters:

• An error
• The results

We are chaining the following two methods:

• Then: This is executed when the promise is resolved
• Catch: This is executed if there is an error while resolving the promise

This type of constructions allows us to write the following code:

act({cmd: 'timeout'})
 .then(function (result) {
 // Never reaches here since the gate executer times out
 })
 .catch(function (err) {
 // err will be set with a timeout error thrown by the gate executer
 });

This code is handling something that we have never talked about before: the gate
executor timeouts. It happens when Seneca cannot reach the destination in some
situations, and it can be easily handled with a promise as shown earlier. The then part
would never be executed as the function will only be called when there is an error.

There are a few well-consolidated options in the market now for promises in
JavaScript. Nowadays, my preferred choice would be Bluebird (https://github.
com/petkaantonov/bluebird) because of its simplicity. Q is another option used
by AngularJS (one of the most popular SPA frameworks), but for day-to-day use, it
looks more complicated than Bluebird.

https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird

Writing Your First Microservice in Node.js

[126]

Debugging
Debugging a Node.js application is very similar to debugging any other application.
IDEs like WebStorm or IntelliJ provide a traditional debugger where you can install
breakpoints and stop the execution whenever the application hits the given line.

This is perfect if you buy a license for one of the IDEs, but there is a free alternative
that will have a very similiar result for the users of Google Chrome, node-inspector.

Node-inspector is an npm package that pretty much enables the Chrome debugger to
debug Node.js applications.

Let's see how it works:

1. First of all, we need to install node-inspector:
npm install –g node-inspector

This should add a command to our system called node-inspector. If we
execute it, we get the following output:

That means our debug server has started.

2. Now we need to run a node application with a special flag to indicate that it
needs to be debugged.
Let's take a simple Seneca act as an example:
var seneca = require('seneca')()
seneca.add({role: 'math', cmd: 'sum'}, function (msg,
 respond) {
 var sum = msg.left + msg.right
 respond(null, {answer: sum})
})

seneca.add({role: 'math', cmd: 'product'}, function (msg,
 respond) {
 var product = msg.left * msg.right
 respond(null, { answer: product })
})

seneca.act({role: 'math', cmd: 'sum', left: 1, right: 2},
 console.log)

Chapter 4

[127]

seneca.act({role: 'math', cmd: 'product', left: 3, right: 4},
 console.log)

3. Now, in order to run it on the debug mode, execute the following command:
node index.js --debug-brk

The way to access the debugger is through the URL http://127.0.0.1:808
0/?port=5858:

I am sure this image is very familiar to every developer in the world: it is the Chrome
debugger showing our code. As you can see in the first line, the one highlighted
in blue, the application stopped in the first instruction so that we can place the
breakpoints by clicking the line numbers, as shown in the following image:

Writing Your First Microservice in Node.js

[128]

As you can see in the preceding image, we have installed a breakpoint in line 9.
Now we can use the control panel to navigate through the code and values of
our variables:

The controls on the top speak for themselves if you ever debugged an application:

• The first button is called play and it allows the application to run to the
next breakpoint

• Step over executes the next line in the current file
• Step into goes into the next line, getting deeper in the call stack so that we

can see the call hierarchy
• Step out is the reverse of step into
• Disable breakpoints will prevent the program from stopping at the

breakpoints
• Pause on exceptions, as its name indicates, will cause the program to stop on

exceptions (it is very useful when trying to catch errors)

Chapter 4

[129]

If we click on play, we can see how the script will stop in line 9 in the following image:

As a good debugger, it will let us inspect the value of our variables by hovering the
cursor over the variable name.

Summary
This chapter has been pretty intense. We have gone through a lot of content that
helped us in building a small microservices ecosystem that, when orchestrated
together, would fairly work well. We have been a bit simplistic some times, but the
idea of the book is to indicate the power of the microservices-oriented software. At this
stage, I would recommend the reader to start performing some testing around Seneca.

The documentation on the website is quite helpful, and there are a lot of examples
to follow.

There are a few plugins for storage and transport, as well as other type of plugins
(such as user authentication), that would allow you to experiment with different
features of Seneca.

We will be talking more about some of them in the following chapters.

[131]

Security and Traceability
Security is one of the biggest concerns in systems nowadays. The amount of
information leaked from big companies is worrying, especially because 90% of
the information leaks could be mended with very small actions by the software
developers. Something similar happens with the logging of events and the
traceability of errors. No one really pays too much attention until someone requests
the logs that you don't have in order to audit a failure. In this chapter, we will
discuss how to manage security and logging so that our system is safe and traceable,
with the help of the following topics:

• Infrastructure logical security: We will discuss how to secure our software
infrastructure in order to provide the industry standard security layer in our
communications.

• Application security: We will introduce the common techniques to secure
our applications. Practices such as output encoding or input validation are
the industry standard and they could save us from a catastrophe.

• Traceability: Being able to follow the requests around our system is a must
in microservices architectures. We will leverage this task to Seneca and learn
how to get the information from this fantastic framework.

• Auditing: Even though we put our best efforts in building a software,
accidents happen. The ability to rebuild the sequence of calls and see exactly
what happened is important. We will discuss how to enable our system in
order to be able to recover the required information.

Infrastructure logical security
Infrastructure security is usually ignored by software engineers as it is completely
different from their area of expertise. However, nowadays, and especially if your
career is leaning towards DevOps, it is a subject that should not be ignored.

Security and Traceability

[132]

In this book, we are not going to go very deep into the infrastructure security more
than few rules of thumb to keep your microservices safe.

It is strongly recommended for the readers to read and learn about cryptography and
all the implications around the usage of SSH, which is one of the main resources for
keeping communications secure nowadays.

SSH – encrypting the communications
In any organization, there is a strict list of people who can access certain services. In
general, this authentication for these services is done via username and password,
but it can also be done using a key to verify the identity of the user.

No matter what authentication method is used, the communication should always be
done over a secure channel such as SSH.

SSH stands for Secure Shell and it is a software used to access shells in remote
machines, but it can also be a very helpful tool to create proxies and tunnels to
access remote servers.

Let's explain how it works using the following command:

/home/david:(develop) 2 ssh david@192.168.0.1

The authenticity of host '192.168.0.1 (192.168.0.1)' can't be
established.

RSA key fingerprint is SHA256:S22/A2/
eqxSqkS4VfR1BrcDxNX1rmfM1JkZaGhrjMbk.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.0.1' (RSA) to the list of known
hosts.

vagrant@192.168.0.1's password:

Last login: Mon Jan 25 02:30:21 2016 from 10.0.2.2

Welcome to your virtual machine.

In this case, I am using Vagrant to facilitate the building of virtual machines. Vagrant
is a very popular tool to automate development environments and their website
(https://www.vagrantup.com/) consists of useful information.

https://www.vagrantup.com/

Chapter 5

[133]

In the first line, we execute the ssh david@192.168.0.1 command. This command
tries to open a terminal as the user david in the 192.168.0.1 host.

As it is the first time that this command is executed against the machine in the IP
192.168.0.1, our computer will not trust the remote server.

This is done by maintaining a file called known_hosts, under the /home/david/.
ssh/known_hosts folder in this case (it will depend on the user).

This file is a list of hosts with the corresponding key. As you can see, the following
two lines explain that the host cannot be trusted and present the fingerprint of the key
held by the remote server in order to verify it:

The authenticity of host '192.168.0.1 (192.168.0.1)' can't be
established.

RSA key fingerprint is SHA256:S22/A2/
eqxSqkS4VfR1BrcDxNX1rmfM1JkZaGhrjMbk.

At this point, the user is supposed to verify the identity of the server by checking the
key. Once this is done, we can instruct SSH to connect to the server, which will result
in the following log being printed:

Warning: Permanently added '192.168.0.1' (RSA) to the list of known
hosts.

Now, if we check our known_hosts file, we can see that the key has been added to
the list, as follows:

This key stored in the known_hosts file is the public key of the remote server.

Security and Traceability

[134]

SSH uses a cryptography algorithm called RSA. This algorithm is built around the
concept of asymmetric cryptography, which is shown in the following image:

The asymmetric cryptography relies on a set of keys: one public and one private. As
the name states, the public key can be shared with everyone; whereas, the private
key has to be kept secret.

The messages encrypted with the private key can only be decrypted with the public
key and the other way around so that it is almost impossible (unless someone gets
the other half of the key) to intercept and decrypt a message.

At this point, our computer knows the public key of the server and we are in a
position to start an encrypted session with the server. Once we get the terminal, all the
commands and results of these commands will be encrypted and sent over the wire.

Chapter 5

[135]

This key can also be used to connect to a remote server without password. The only
thing we need to do is generate an SSH key in our machine and install it in the server
in a file called authorized_keys under the .ssh folder, where the known_hosts
file is.

When working with microservices, you can be remotely logged in to quite a few
different machines so that this approach becomes more attractive. However, we need
to be very careful about how we handle the private keys because if a user leaks that
private key, our infrastructure could be compromised.

Application security
Application security is becoming more and more important. As the cloud is
becoming the de-facto standard for infrastructure in large companies, we can't
rely on the fact that the data is confined in a single data centre.

Usually, when someone starts a new business, the main focus is to build the
product from the functional point of view. Security is not the main focus and
usually gets overlooked.

This is a very dangerous practice and we are going to amend that by letting the
reader know the main security threats that could compromise our application.

The main four big security points to develop applications in a secure manner are
as follows:

• Injection
• Cross-site scripting
• Cross-site request forgery token protection
• Open redirects

At the end of this section, we will be able to identify the main vulnerabilities, but we
won't be armored against a malicious attacker. In general, a software engineer should
be up to date with the security as much as they are up to date with new technologies.
No matter how good the product you build is, if it is not secure, someone will find
out and take the advantage of it.

Common threats – how to be up to date
As we stated before, security is an ongoing subject in application development.
No matter what type of software you are building, there will always be security
implications around it.

Security and Traceability

[136]

The best way I've found during my professional career to be up to date with security
around web development without being a full-time dedicated security engineer is
to follow the OWASP project. OWASP stands for Open Web Application Security
Project and they produce quite an interesting document (among others) on a yearly
basis called OWASP Top 10.

OWASP Top 10 was first published in 2003 and its goal is to raise
awareness in the development community about the most common
threats in application development.

In the previous section, we identified the four main security issues that a software
developer can face and all of them are mentioned in the following sections.

Injection
Injection is, by far, the most dangerous attack that we could be exposed to.
Specifically, a SQL injection is the most common form of injection that affects
applications and it consists of an attacker forcing a SQL code in one of our application
queries, leading to a different query that could compromise the data of our company.

There are other types of injections, but we are going to focus on SQL injection, as
pretty much every application in the modern world uses a relational database.

SQL injection consists of the injection or manipulation of SQL queries in our
application through the input from non-validated sources, such as a web form
or any other data source with arbitrary input of text.

Let's consider the following example:

SELECT * FROM users WHERE username = 'username' AND password = 'password'

Never store passwords in plain in the database. Always hash
and salt them to avoid rainbow-table attacks. This is just an
example.

This query will give us the user that corresponds to a given name and password. In
order to build the query from the client's input, we can consider doing something
similar to the following code as a good idea:

var express = require('express');
var app = express();
var mysql = require('mysql');

var connection = mysql.createConnection({

Chapter 5

[137]

 host : 'localhost',
 user : 'me',
 password : 'secret',
 database : 'test_db'
});

app.get('/login', function(req, res) {
 var username = req.param("username");
 var password = req.param("password");

 connection.connect();
 var query = "SELECT * FROM users WHERE username = '" + username
 + "' AND password = '" + password + "'";
 connection.query(query, function(err, rows, fields) {
 if (err) throw err;
 res.send(rows);
 });
 connection.end();
});

app.listen(3000, function() {
 console.log("Application running in port 3000.");
});

At first sight, it looks like an easy program that accesses the database called test_db
and issues a query to check whether there is a user that matches the username and
password and renders it back to the client so that if we open the browser and try to
browse to the http://localhost:3000/login?username=david&password=mypassw
ord URL, the browser will render a JSON object with the result of the following query:

SELECT * FROM users WHERE username = 'david' AND password = 'mypassword'

Nothing strange yet, but what happens if the customer tries to hack us?

Take a look at the following input:

http://localhost:3000/login?username=' OR 1=1 --&password=mypassword

As you can see, the query generated by it is the following code:

SELECT * FROM users WHERE username = '' OR 1=1 -- AND password =
'mypassword'

In SQL, the -- character sequence is used to comment the rest of the line so that the
effective query would be as follows:

SELECT * FROM users WHERE username='' OR 1=1

Security and Traceability

[138]

This query returns the full list of users, and if our software is using the result of this
query to resolve whether the user should be logged in or not, we are in some serious
problems. We have just granted access to our system to someone who does not even
know a valid username.

This is one of the many examples on how SQL injection can affect us.

In this case, it is pretty obvious that we are concatenating untrusted data (coming
from the user) into our query, but believe me, when the software gets more
complicated, it is not always easy to identify.

A way to avoid SQL injection is through the usage of prepared statements.

Input validation
Applications interact with users mainly through forms. These forms usually contain
free text input fields that could lead to an attack.

The easiest way to prevent corrupted data from getting into our server is through
input validation, which as the name suggests, consists of validating the input from
the user to avoid the situation described earlier.

There are two types of input validation, as follows:

• White listing
• Black listing

Black listing is a dangerous technique. In majority of cases, trying to define what is
incorrect in the input takes a lot more effort than simply defining what we expect.

The recommended approach is (and will always be) to white list the data coming
from the user, validating it through the use of a regular expression: we know how a
phone number looks like, we also know how a username should look like, and so on.

Input validation is not always easy. If you have ever come across the validation of an
e-mail, you will know what I am talking about: the regular expression to validate an
e-mail is anything but simple.

The fact that there is not an easy way to validate some data should not restrict us from
doing it as the omission of input validation could lead to a serious security flaw.

Input validation is not the silver bullet for SQL injections, but it also helps with other
security threats such as cross-site scripting.

In the query from the previous section, we do something quite dangerous:
concatenate user input into our query.

Chapter 5

[139]

One of the solutions could be to use some sort of escaping library that will sanitize
the input from the user, as follows:

app.get('/login', function(req, res) {
 var username = req.param("username");
 var password = req.param("password");

 connection.connect();
 var query = "SELECT * FROM users WHERE username = '" +
 connection.escape(username) + "' AND password = '" +
 connection.escape(password) + "'";
 connection.query(query, function(err, rows, fields) {
 if (err) throw err;
 res.send(rows);
 });
 connection.end();
});

In this case, the mysql library used provides a suite of methods to escape strings.
Let's see how it works:

var mysql = require('mysql');
var connection = mysql.createConnection({
 host: 'localhost',
 username: 'root',
 password: 'root'
});

console.log(connection.escape("' OR 1=1 --"))

The small script from earlier escapes the string provided as username in the previous
example, the result is \' OR 1=1 --.

As you can see, the escape() method has replaced the dangerous characters,
sanitizing the input from the user.

Cross-site scripting
Cross-site scripting, also known as XSS, is a security vulnerability that mainly
affects web applications. It is one of the most common security issues and the
implications can be huge for the customer as potentially, someone could steal
the user identity with this attack.

The attack is an injection code put into a third-party website that could steal data
from the client's browser. There are a few ways of doing it, but by far, the most
common is by unescaped input from the client.

Security and Traceability

[140]

In few websites on the Internet, users can add comments containing arbitrary input.
This arbitrary input can contain script tags that load a JavaScript from a remote
server that can steal the session cookie (or other types of valuable information),
letting the attacker replicate the user session on a remote machine.

There are two main types of XSS attacks: persistent and non-persistent.

The persistent type of XSS consists of storing the XSS attack by crafting a particular
string of text that resolves into the attack once it is displayed to the user in the
website. This code could be injected via an arbitrary input text that is stored in the
database (such as a comment in a forum).

The non-persistent type of XSS is when the attack is inserted into a non-persistent
part of the application due to bad data handling.

Let's take a look at the following screenshot:

Chapter 5

[141]

As you can see, we have searched for a book (this book) in http://www.amazon.
co.uk/. It does not produce any output (as the book is not published yet), but it
specifies that Your search "microservices nodejs" did not match any products,
which is somehow using the input from the web browser as output. Even more,
when I clicked on search, Amazon redirected me to the following URL:

http://www.amazon.co.uk/s/ref=nb_sb_noss?url=search-
alias%3Daps&field-keywords=microservices+nodejs

We know Amazon is secure, but if it was sensible to XSS attacks, we could have
modified the value of the field-keywords parameter to craft a request that injected
a script tag in the content, leading to the attacker being able to steal the session
cookie that could result in some serious problems for the website.

Output encoding
A way to protect against this attack is output encoding. We have done it before,
when we used connection.escape() in the Input validation section of this chapter.
In fairness, we should be validating all the data entered from the user and encoding
all the outputs that come from third parties. This includes the input entered by the
user, as well as sources of information coming from outside of the system.

When narrowing the problem to web development, we have to be aware of the three
different areas where output encoding is needed:

• CSS
• JavaScript
• HTML

The most problematic two are JavaScript and HTML, where an attacker could easily
steal information without too much effort.

Generally, no matter which framework we use for building our app, it always has
functions to encode the output.

Cross-site request forgery
Cross-site request forgery (CSRF) is the reverse of cross-site request scripting. In
cross-site request scripting, the problem is in the client trusting the data coming from
the server. With cross-site request forgery, the problem is that the server trusts the
data coming from the client.

After stealing the session cookie, the attacker can not only steal information from the
user, but can also modify the information of the account associated with the cookie.

http://www.amazon.co.uk/
http://www.amazon.co.uk/
http://www.amazon.co.uk/s/ref=nb_sb_noss?url=search-alias%3Daps&field-keywords=microservices+nodejs
http://www.amazon.co.uk/s/ref=nb_sb_noss?url=search-alias%3Daps&field-keywords=microservices+nodejs

Security and Traceability

[142]

This is done by posting the data to the server via HTTP requests.

HTTP classifies its requests in methods. A method is basically used to specify what is
the operation to be carried by the request. The most interesting four methods are the
following ones:

• GET: This gets the data from the server. It should not modify any persistent
data.

• POST: This creates a resource in the server.
• PUT: This updates a resource in the server.
• DELETE: This deletes a resource from the server.

There are more methods (such as PATCH or CONNECT), but let's focus on these four.
As you can see, three of these four methods modify data from the server, and a user
with a valid session could potentially steal data, create payments, order goods, and
so on.

A way to avoid the cross-site request forgery attack is by protecting the POST, PUT
and DELETE endpoints with a cross-site request token.

Take a look at the following HTML form:

<form action="/register" method="post">
 <input name="email" type="text" />
 <input name="password" type="password" />
</form>

This form describes a perfectly valid situation: a user registering on our website; very
simple, but still valid and flawed.

We are specifying a URL and the list of expected parameters so that an attacker can
register hundreds or thousands of accounts within a span of minutes, with a small
script that issues a POST request with the two parameters (email and password) in
the body.

Now, look at the following form:

<form action="/register" method="post">
 <input name="email" type="text" />
 <input name="password" type="password" />
 <input name="csrftoken" type="hidden"
 value="as7d6fasd678f5a5sf5asf" />
</form>

You can see the difference: there is an extra hidden parameter called csrftoken.

Chapter 5

[143]

This parameter is a random string that is generated every time a form is rendered so
that we can add this extra parameter to every form.

Once the form is submitted, the csrftoken parameter is validated to only let go
through the requests with a valid token and generate a new token to be rendered on
the page again.

Open redirects
Sometimes, our application might need to redirect the user to a certain URL. For
example, when hitting a private URL without a valid authentication, the user will
usually be redirected to the login page:

http://www.mysite.com/my-private-page

This could result into a redirect to the following:

http://www.mysite.com/login?redirect=/my-private-page

This sounds legit. The user is sent to the login page, and once he provides a valid set
of credentials, it is redirected to /my-private-page.

What happens if someone tries to steal the account of our user?

Look at the following request:

http://www.mysite.com/login?redirect=http://myslte.com

This is a crafted request that will redirect the user to myslte.com instead of mysite.
com (note the l instead of i).

Someone could make myslte.com look like the login page of mysite.com and steal
your user's password and username by distributing the preceding URL in the social
media as the users will be redirected to a malicious page.

The solution for the preceding problem is quite simple: don't redirect the user to
untrusted third-party websites.

Again, the best way of doing such task is white listing the target hosts for redirects.
Basically, we don't let our software redirect our customers to unknown websites.

Security and Traceability

[144]

Effective code reviews
One of the most effective ways to reduce security flaws in our applications is through
a systematic and informed code review process. The problem with code reviews is
that they always end up being a dump area for opinions and personal preferences
that usually not only won't improve the quality of the code, but will also lead to last
minute changes that could expose vulnerabilities in our application.

A dedicated stage in the product development life cycle for a security code review
helps to drastically reduce the amount of bugs delivered to production.

The problem that the software engineers have is that their mind is trained to build
things that work well, but they don't have the mindset to find defects, especially
around the things that they build. This is why you should not be testing your own
code (any further than the test carried on when developing), and even less, security
testing your application.

However, we usually work in teams and that enables us to review someone else's
code, but we have to do it in an effective manner.

Code reviews require as much brain power as needed to write software, especially
if you are reviewing a complex code. You should never spend more than two hours
reviewing the same functionality, otherwise important flaws will be missed and
attention to detail will decrease to a worrying level.

This is not a big problem in microservices-based architectures as the functionality
should be small enough to be read in a reasonable period of time, especially if you
talked to the author about what he was trying to build.

You should always follow a two phase review, as follows:

• Review the code quickly to get the big picture: how it works, what
technology it uses that you are not familiar with, does it do what it is
supposed to do, and so on

• Review the code following a checklist of items to look for

This list of items has to be decided upfront and depends on the nature of the
software that your company is building.

Chapter 5

[145]

Usually, the list of items to check around the code security concerns during a code
review is quite big, but we can narrow it down to the following components:

• Is all the input validated/encoded when applicable?
• Is all the output encoded, including logs?
• Do we protect endpoints with cross-site request forgery tokens?
• Are all the user credentials encrypted or hashed in the database?

If we check this list, we will be able to identify the biggest issues around security in
our apps.

Traceability
Traceability is extremely important in the modern information systems. It is a
delicate matter in microservices that is gracefully solved in Seneca, making the
requests easy to follow around our system so that we can audit the failure.

Logging
Seneca is pretty good with the logging. There are so many options that can be
configured in Seneca in order to get the required information about how everything
is working (if it is working).

Let's see how logging works with a small application:

var seneca = require("seneca")();

seneca.add({cmd: "greeter"}, function(args, callback){
 callback(null, {message: "Hello " + args.name});
});

seneca.act({cmd: "greeter", name: "David"}, function(err, result) {
 console.log(result);
});

This is the simplest Seneca application that can be written. Let's run it as follows:

seneca node index.js

2016-02-01T09:55:40.962Z 3rhomq69cbe0/1454579740947/84217/- INFO hello Se
neca/1.0.0/3rhomq69cbe0/1454579740947/84217/-

{ message: 'Hello David' }

Security and Traceability

[146]

This is the result of running the app with the default logging configuration. Aside
from the console.log() method that we have used in the code, there is some
internal information about Seneca being logged. Sometimes, you might want to
only log what your application is producing so that you can debug the application
without all the noise. In this case, just run the following command:

seneca node index.js --seneca.log.quiet

{ message: 'Hello David' }

However, sometimes, there are weird behaviors in the system (or even a bug in the
frameworks used) and you want to get all the information about what is happening.
Seneca supports that as well, as shown in the following command:

seneca node index.js --seneca.log.print

The preceding command will print an endless amount of information that might not
be helpful.

In order to reduce the amount of logging produced by Seneca, there is a fine-grain
control in what gets logged into the output. Let's take a look at the following lines:

2016-02-01T10:00:07.191Z dyy9ixcavqu4/1454580006885/85010/- DEBUG
register install transport {exports:[transport/utils]} seneca-8t1dup

2016-02-01T10:00:07.305Z dyy9ixcavqu4/1454580006885/85010/- DEBUG
register init seneca-y9os9j

2016-02-01T10:00:07.305Z dyy9ixcavqu4/1454580006885/85010/- DEBUG plugin
seneca-y9os9j DEFINE {}

2016-02-01T10:00:07.330Z dyy9ixcavqu4/1454580006885/85010/-
DEBUG act root$ IN o5onzziv9i7a/b7dtf6v1u9sq cmd:greeter
{cmd:greeter,name:David} ENTRY (mnb89) - - -

They are random lines from a log output on the preceding code example, but it will
give us useful information: these entries are debug-level log lines for different actions
(such as plugin, register, and act) on the Seneca framework. In order to filter them,
Seneca provides a control over what levels or actions do we want to see. Consider
the following for example:

node index.js --seneca.log=level:INFO

This will only output the logs related to the INFO level:

seneca node index.js --seneca.log=level:INFO

2016-02-04T10:39:04.685Z q6wnh8qmm1l3/1454582344670/91823/- INFO hello
Seneca/1.0.0/q6wnh8qmm1l3/1454582344670/91823/-

{ message: 'Hello David' }

Chapter 5

[147]

You can also filter by action type, which is quite interesting. When you are working
with microservices, knowing the chain of events that happened in a flow is one
of the first things that you need to look into in order to audit a failure. With this
control over the logging that Seneca gives us, it is as easy as executing the following
command:

node index.js --seneca.log=type:act

This will produce the following output:

As you can see, all the preceding lines correspond to the act type, and even more,
if we follow the output of the command from top to bottom, we exactly know the
sequence of events to which Seneca reacted and their order.

Tracing requests
Tracing requests is also a very important activity, and sometimes, it is even a legal
requirement, especially if you work in the world of finance. Again, Seneca is fantastic
at tracing requests. For every call, Seneca generates a unique identifier. This identifier
can be traced across all the paths to where the call is going to, as follows:

var seneca = require("seneca")();

seneca.add({cmd: "greeter"}, function(args, callback){
 console.log(this.fixedargs['tx$']);
 callback(null, {message: "Hello " + args.name});
});
seneca.act({cmd: "greeter", name: "David"}, function(err, result) {
 console.log(this.fixedargs['tx$']);
});

Here, we are logging a dictionary that contains the transaction ID in Seneca to the
terminal. So, if we execute it, we will get the following output:

2016-02-04T10:58:07.570Z zl0u7hj3hbeg/1454583487555/95159/- INFO hello
Seneca/1.0.0/zl0u7hj3hbeg/1454583487555/95159/-

3jlroj2n91da

3jlroj2n91da

Security and Traceability

[148]

You can see how all the requests in Seneca are traced: the framework assigns an ID
and it gets propagated across endpoints. In this case, all our endpoints are in the
local machine, but if we distribute them in different machines, the ID will still be
the same.

With this unique ID, we will be able to reconstruct the journey of the customer data
in our system, and ordering the requests with the associated timestamp, we can get
an accurate picture of what the user was doing, how much time did every action
take, what are the possible problems associated with delays, and so on. Usually, the
logging combined with circuit breakers output information allows the engineers to
solve issues within a very reduced time frame.

Auditing
Up till now, we have been using console.log() to output the data into the logs.
This is a bad practice. It breaks the format of the logs and throws the content to the
standard output.

Again, Seneca comes to the rescue:

var seneca = require("seneca")();

seneca.add({cmd: "greeter"}, function(args, callback){
 this.log.warn(this.fixedargs['tx$']);
 callback(null, {message: "Hello " + args.name});
});

seneca.act({cmd: "greeter", name: "David"}, function(err, result) {
 this.log.warn(this.fixedargs['tx$']);
});

Let's see what Seneca produces as output:

seneca node index.js

2016-02-04T11:17:28.772Z wo10oa299tub/1454584648758/98550/- INFO hello
Seneca/1.0.0/wo10oa299tub/1454584648758/98550/-

2016-02-04T11:17:29.156Z wo10oa299tub/1454584648758/98550/- WARN - - ACT
02jlpyiux70s/9ca086d19x7n cmd:greeter 9ca086d19x7n

2016-02-04T11:17:29.157Z wo10oa299tub/1454584648758/98550/- WARN - - ACT
02jlpyiux70s/9ca086d19x7n cmd:greeter 9ca086d19x7n

As you can see, we are now outputting the transaction ID using the logger. We have
produced a WARN message instead of a simple console dump. From now on, we can
use Seneca log filters to hide the output of our actions in order to focus on what we
are trying to find.

Chapter 5

[149]

Seneca provides the following five levels of logging:

• DEBUG: This is used to debug applications when you are developing them
and also trace problems in production systems.

• INFO: This log level is used to produce important messages about events
such as a transaction has started or completed.

• WARN: This is the warning level. We use it when something bad happens
in the system, but it is not critical, the user usually does not get affected;
however, it is an indication that something is going in the wrong way.

• ERROR: This is used to log errors. Generally, the user gets affected by it and
it also interrupts the flow.

• FATAL: This is the most catastrophic level. It is only used when a
non-recoverable error has occurred and the system won't be able to
function normally.

A way to produce logs in different levels is to use the associated functions. As we
have seen earlier, we called this.log.warn() to log a warning. If we call the this.
log.fatal() method, we will be logging a fatal error, and same with the other levels.

Try to adjust the logs in your application as a part of the
development process or you will regret the lack of information
when something bad occurs in production.

In general, INFO, DEBUG, and WARN will be the most used log levels.

HTTP codes
HTTP codes are often ignored, but they are a really important mechanism to
standardize responses from remote servers.

When a program (or user) issues a request to a server, there are a few things that
could happen, as follows:

• It could be successful
• It could fail validation
• It could produce a server error

As you can see, the possibilities are endless. The problem that we now have is that
HTTP was created for the communication between machines. How do we handle the
fact that machines will be reading these codes?

Security and Traceability

[150]

HTTP solved this problem in a very elegant way: every single request has to be
resolved with an HTTP code and these codes have ranges that indicate the nature
of the code.

1xx – informational
The codes in the 100-199 range are purely informational. The most interesting code in
this range is the 102 code. This code is used to specify that an operation is happening
in the background and might take some time to complete.

2xx – success codes
Success codes are used to indicate a certain level of success in the HTTP request. It is
the most common (and desired) codes.

The most common codes in this range are as follows:

• 200: Success: This code indicates a full success. Nothing went wrong
even remotely.

• 201: Created: This code is used mainly for REST APIs when the client
requests to create a new entity in the server.

• 203: Non-authoritative information: This code is intended to be used
when, while routing the request through a transforming proxy, the origin
responds with a 200.

• 204: No Content: This is a successful code, but there is no content coming
back from the server. Sometimes, APIs returns 200, even if there is no content.

• 206: Partial Content: This code is used for paginated responses. A header
is sent, specifying a range (and an offset) that the client will accept. If the
response is bigger than the range, the server will reply with 206, indicating
that there is more data to follow.

3xx – redirection
The codes in the 300 to 399 range indicate that the client must take some additional
actions to complete the request.

The most common codes in this range are described as follows:

• 301: Moved permanently: This status code is indicating that the resource
that the client was trying to get has been moved permanently to another
location.

Chapter 5

[151]

• 302: Found: This code indicates that the user is required to perform a
temporary redirect for some reason, but the browsers started implementing
this code as 303 See Other. This lead to the introduction of the 303 and 307
Temporary redirect codes to disambiguate the overlap of behavior.

• 308 Permanent Redirect: This code, as the name indicates, is used to
specify a permanent redirect for a resource. It could be confused with 301,
but there is a small difference, the 308 code does not allow the HTTP method
to change.

4xx – client errors
The codes in the 400 to 499 range represent errors generated by the client. They
indicate that there is a problem with the request. This range is particularly important
as it is the way that HTTP servers have to indicate the clients that something is
wrong with their request.

The common codes in this range are as follows:

• 400 Bad Request: This code indicates that the request from the user is
syntactically incorrect. There could be parameters missing or some of the
values didn't pass validation.

• 401 Unauthorized: This code represents a lack of authentication of the
client. Usually, a valid login will fix this problem.

• 403 Forbidden: This is similar to 401, but in this case, it is indicating that the
user does not have enough privileges.

• 404 Not Found: This means that the resource is not found in the server. This
is the error that you get when you navigate to a page that does not exist.

5xx – server errors
This range indicates that there has been a processing error in the server. When a
5xx code is issued, it means that there was some sort of problem in the server and it
cannot be fixed from the client.

Some of the codes in this range are as follows:

• 500 Internal Server Error: This means that an error has occurred in the
software in the server. There is no more information disclosed.

• 501 Not Implemented: This error occurs when a client hits an endpoint that
has not been implemented yet.

• 503 Service unavailable: This code is issued when the server is not
available for some reason, either an excess of the load or the server is down.

Security and Traceability

[152]

Why HTTP codes matter in microservices
The popular saying don't reinvent the wheel is one of my favorite principles when
building software. HTTP codes are a standard, so everybody understands the
consequences of the different codes.

When building microservices, you always need to keep in mind that your system
will be interacting with proxies, caches, and other services that already speak HTTP
so that they can react according to the response from the servers.

The best example of this is the circuit-breaker pattern. No matter how you
implement it and what software you use, a circuit breaker has to understand that an
HTTP request with 500 code is an error, so it can open the circuit accordingly.

In general, it is good practice to keep the codes of your application as accurate as
possible as it will benefit your system in the long run.

Summary
In this chapter, you have learned how to build secure software (and not only
microservices), although it is a subject big enough to write a full book on it. The
problem with security is that companies usually see investing in security as burning
money, but that is far from reality. I am a big fan of the 80-20 rule: 20% of time will
give you 80% of features and the 20% of missing features will require 80% of the time.

In security, we really should be aiming for 100% coverage; however, the 80% shown
in this chapter will cover majority of the cases. Anyway, as I mentioned before, a
software engineer should be up to date with security as a flaw in the security of an
application is the easiest way to kill a company.

We have also been talking about traceability and logging, one of the most ignored
subjects in the modern software engineering that are becoming more and more
important, especially if your software is built using a microservices approach.

[153]

Testing and Documenting
Node.js Microservices

Until now, all that we have done is develop microservices and discuss the
frameworks around the process of building software components. Now it is time
to test all of them. Testing is the activity of validating the software that has been
built. Validating is a very broad term. In this chapter, we are going to learn how to
test microservices, not only from the functional point of view, but we will also learn
how to test the performance of our applications, as well as other aspects such as
integration with different modules. We will also build a proxy using Node.js to help
us to inspect the inputs and outputs of our services so that we can validate that what
we have designed is actually happening and, once again, reassure the versatility of a
language, such as JavaScript, to quickly prototype features.

It is also nowadays a trend to release features with an A/B test, where we only
enable the features for certain type of users, and then we collect metrics to see
how the changes to our system are performing. In this chapter, we will build a
microservice that is going to give us the capability of rolling out features in a
controlled way.

On the other hand, we are going to document our application, which unfortunately,
is a forgotten activity in traditional software development: I haven't found a
single company where the documentation captures 100% the information needed
by new developers.

Testing and Documenting Node.js Microservices

[154]

We will cover the following topics in this chapter:

• Functional testing: In this section, we will learn how to test microservices
and what a good testing strategy is. We will also get to study a tool called
Postman to manually test our APIs, as well as build a proxy with Node.js to
spy our connections.

• Documenting microservices: We will learn how to use Swagger to document
our microservices using the open API standard. We will also generate the
code from the YAML definition using an open source tool.

Functional testing
Testing is usually a time-consuming activity that does not get all the required
attention while building a software.

Think about how a company evolves:

1. Someone comes up with an idea.
2. A few engineers/product people build the system.
3. The company goes to market.

There is no time to test more than the minimal required manual testing. Especially,
when someone reads on the Internet that testing done right could take up to 40% of
your development time, and once again, the common sense fails.

Automation is good and unit, integration, and end-to-end tests are a form of
automation. By letting a computer test our software, we are drastically cutting
down the human effort required to validate our software.

Think about how the software is developed. Even though our company likes to
claim that we are agile, the truth is that every single software project has some level
of iterative development, and testing is a part of every cycle, but generally, it is
overlooked in favour of delivering new features.

Chapter 6

[155]

By automating the majority (or a big chunk) of the testing, we are saving money, as
shown in the following diagram:

Costs and Iterations

Testing is actually a cost saver if is done right, and the key is doing it right, which
is not always easy. How much testing is too much testing? Should we cover every
single corner of our application? Do we really need deep performance testing?

These questions usually lead to a different stream of opinions, and the interesting thing
is that there is not a single source of truth. It depends on the nature of your system.

In this chapter, we are going to learn a set of extensive testing techniques, which
does not mean that we should be including all of them in our test plan, but at least
we will be aware of the testing methodologies.

In the past seven years, Ruby on Rails has created a massive trend towards a new
paradigm, called Test-driven development (TDD), up to a point that, nowadays,
majority of the new development platforms are built with TDD in mind.

Personally, I am not a fierce adopter of TDD, but I like to take the good parts.
Planning the test before the development helps to create modules with the right level
of cohesion and define a clear and easy-to-test interface. In this chapter, we won't
cover the TDD in depth, but we will mention it a few times and explain how to apply
the exposed techniques to a TDD test plan.

Testing and Documenting Node.js Microservices

[156]

The pyramid of automated testing
How to lay down your testing plan is a tricky question. No matter what you do, you
will always end up with the sensation that this is completely wrong.

Before diving into the deep, let's define the different type of tests that we are
going to be dealing with from the functional point of view, and what should they
be designed for.

Unit tests
A unit test is a test that covers individual parts of the application without taking into
account the integration with different modules. It is also called white box testing as
the aim is to cover and verify as many branches as possible.

Generally, the way to measure the quality of our tests is the test coverage and it is
measured in percentage. If our code spans over ten branches and our tests cover
seven branches, our code coverage is 70%. This is a good indication of how reliable
our test coverage is. However, it could be misleading as the tests could be flawed,
or even though all the branches are tested, a different input would cause a different
output that wasn't captured by a test.

In unit tests, as we don't interact with other modules, we will be making a heavy
use of mocks and stubs in order to simulate responses from third-party systems
and control the flow to hit the desired branch.

Integration tests
Integration tests, as the name suggests, are the tests designed to verify the integration
of our module in the application environment. They are not designed to test the
branches of our code, but business units, where we will be saving the data into
databases, calling third-party web services or other microservices of our architecture.

These tests are the perfect tool for checking whether our service is behaving as
expected, and sometimes, could be hard to maintain (more often than not).

During my years of experience, I haven't found a company where the integration
testing is done right and there are a number of reasons for this, as stated in the
following list:

• Some companies think that integration testing is expensive (and it is true) as
it requires extra resources (such as databases and extra machines)

Chapter 6

[157]

• Some other companies try to cover all the business cases just with unit
testing, which depending on the business cases, could work, but it is far
from ideal as unit tests make assumptions (mocks) that could give us a false
confidence in our test suite

• Sometimes, integration tests are used to verify the code branches as if they
were unit tests, which is time consuming as you need to work out the
environment to make the integration test to hit the required branch

No matter how smart you want to be, integration testing is something that you want
to do right, as it is the first real barrier in our software to prevent integration bugs
from being released into production.

End-to-end tests
Here, we will demonstrate that our application actually works. In an integration
test, we are invoking the services at code level. This means that we need to build the
context of the service and then issue the call.

The difference with end-to-end testing is that, in end-to-end testing, we actually
fully deploy our application and issue the required calls to execute the target
code. However, many times, the engineers can decide to bundle both type of tests
(integration and end-to-end tests) together, as the modern frameworks allow us to
quickly run E2E tests as if they were integration tests.

As the integration tests, the target of the end-to-end tests is not to test all the paths of
the application but test the use cases.

In end-to-end tests, we can find a few different modalities (paradigms) of testing,
as follows:

• We can test our API issuing JSON requests (or other type of requests)
• We can test our UI using Selenium to emulate clicks on the DOM
• We can use a new paradigm called behavior-driven development (BDD)

testing, where the use cases are mapped into actions in our application (clicks
on the UI, requests in the API, and so on) and execute the use cases for which
the application was built

End-to-end tests are usually very fragile and they get broken fairly easy. Depending
on our application, we might get relaxed about these tests as the cost-value ratio is
pretty low, but still, I would recommend having some of them covering at least the
most basic and essential flows.

Testing and Documenting Node.js Microservices

[158]

How much testing is too much?
Questions such as the following are not easy to answer, especially in fast paced
businesses, like startups:

• Do we have too many integration tests?
• Should we aim for 100% unit test coverage?
• Why bother with Selenium tests if they break every second day for no reason?

There is always a compromise. Test coverage versus time consumed, and also, there
is no simple and single answer to these questions.

The only useful guideline that I've found along the years is what the testing world
calls the pyramid of testing, which is shown in the following figure. If you think for
a moment, in the projects where you worked before, how many tests did you have
in total? What percentage of these were integration tests and unit tests? What about
end-to-end tests?:

The pyramid of testing

Chapter 6

[159]

The preceding pyramid shows the answers for these questions. In a healthy test plan,
we should have a lot of unit tests: some integration tests and very few E2E tests.

The reason for this is very simple, majority of the problems can be caught within
unit testing. Hitting the different branches of our code will verify the functionality
of pretty much every functional case in our application, so it makes sense to have
plenty of them in our test plan. Based on my experience, in a balanced test plan,
around 70% of our tests should be unit tests. However, in a microservices-oriented
architecture, especially with a dynamic language such as Node.js, this figure can
easily go down and still be effective with our testing. The reasoning behind it is that
Node.js allows you to write integration tests very quickly so that we can replace
some unit tests by integration tests.

Testing is a very well-documented, complex process. Trying to
outsmart the existing methodologies could result in a hard-to-maintain
and difficult-to-trust test suite.

Integration tests are responsible for catching integration problems, as shown in
the following:

• Can our code call the SMS gateway?
• Would the connection to the database be OK?
• Are the HTTP headers being sent from our service?

Again, around 20% of our tests, based on my experience, should be integration tests;
focus on the positive flows and some of the negative that depend on third-party
modules.

When it comes down to E2E tests, they should be very limited and only test the main
flows of the applications without going into too much detail. These details should be
already captured by the unit and integration tests that are easy to fix in an event of
failure. However, there is a catch here: when testing microservices in Node.js, 90%
of the time, integration and E2E tests can be the same thing. Due to the dynamic
nature of Node.js, we can test the rest API from the integration point of view (the full
server running), but in reality, we will also be testing how our code behaves when
integrated with other modules. We will see an example later in this chapter.

Testing and Documenting Node.js Microservices

[160]

Testing microservices in Node.js
Node.js is an impressive language. The amount of libraries around any single aspect
of the development is amazing. No matter how bizarre the task that you want to
achieve in Node.js is, there will be always an npm module.

Regarding the testing, Node.js has a very powerful set of libraries, but two of them
are especially popular: Mocha and Chai.

They are pretty much the industry standard for app testing and are very well
maintained and upgraded.

Another interesting library is called Sinon.JS, and it is used for mocking, spying and
stubbing methods. We will come back to these concepts in the following sections,
but this library is basically used to simulate integrations with third parties without
interacting with them.

Chai
This library is a BDD/TDD assertions library that can be used in conjunction with
any other library to create high quality tests.

An assertion is a code statement that will either be fulfilled or throw an error,
stopping the test and marking it as a failure:

5 should be equal to A

The preceding statement will be correct when the variable A contains the value 5. This
is a very powerful tool to write easy-to-understand tests, and especially with Chai, we
have access to assertions making use of the following three different interfaces:

• should

• expect

• assert

At the end of the day, every single condition can be checked using a single interface,
but the fact that the library provides us with such a rich interface facilitates the
verbosity of the tests in order to write clean, easy, and maintainable tests.

Let's install the library:

npm install chai

Chapter 6

[161]

This will produce the following output:

This means that Chai depends on assertion-error, type-detect, and deep-eql.
As you can see, this is a good indication that we will be able to check, with simple
instructions, complex statements such as deep equality in objects or type matching.

Testing libraries such as Chai are not a direct dependency of our application, but a
development dependency. We need them to develop applications, but they should
not be shipped to production. This is a good reason to restructure our package.json
and add Chai in the devDependencies dependency tag, as follows:

{
 "name": "chai-test",
 "version": "1.0.0",
 "description": "A test script",
 "main": "chai.js",
 "dependencies": {
 },
 "devDependencies": {
 "chai": "*"
 },
 "author": "David Gonzalez",
 "license": "ISC"
}

This will prevent our software to ship into production libraries such as Chai, which
has nothing to do with the operation of our application.

Once we have installed Chai, we can start playing around with the interfaces.

BDD-style interfaces
Chai comes with two flavors of BDD interfaces. It is a matter of preference which one
to use, but my personal recommendation is to use the one that makes you feel more
comfortable in any situation.

Let's start with the should Interface. This one is a BDD-style interface, using
something similar to the natural language, we can create assertions that will
decide whether our test succeeds or fails:

myVar.should.be.a('string')

Testing and Documenting Node.js Microservices

[162]

In order to be able to build sentences like the one before, we need to import the
should module in our program:

var chai = require('chai');

chai.should();

var foo = "Hello world";
console.log(foo);

foo.should.equal('Hello world');

Although it looks like a bit of dark magic, it is really convenient when testing our
code as we use something similar to the natural language to ensure that our code
is meeting some criteria: foo should be equal to 'Hello world' has a direct translation
to our test.

The second BDD-style interface provided by Chai is expect. Although it is very
similar to should, it changes a bit of syntax in order to set expectations that the
results have to meet.

Let's see the following example:

var expect = require('chai').expect;

var foo = "Hello world";

expect(foo).to.equal("Hello world");

As you can see, the style is very similar: a fluent interface that allows us to check
whether the conditions for the test to succeed are met, but what happens if the
conditions are not met?

Let's execute a simple Node.js program that fails in one of the conditions:

var expect = require('chai').expect;
var animals = ['cat', 'dog', 'parrot'];
expect(animals).to.have.length(4);

Chapter 6

[163]

Now, let's execute the previous script, assuming that you have already installed Chai:

code/node_modules/chai/lib/chai/assertion.js:107

 throw new AssertionError(msg, {

 ^

AssertionError: expected ['cat', 'dog', 'parrot'] to have a length of 4
but got 3

 at Object.<anonymous> (/Users/dgonzalez/Dropbox/Microservices with
Node/Writing Bundle/Chapter 6/code/chai.js:24:25)

 at Module._compile (module.js:460:26)

 at Object.Module._extensions..js (module.js:478:10)

 at Module.load (module.js:355:32)

 at Function.Module._load (module.js:310:12)

 at Function.Module.runMain (module.js:501:10)

 at startup (node.js:129:16)

 at node.js:814:3

An exception is thrown and the test fails. If all the conditions were validated, no
exception would have been raised and the test would have succeeded.

As you can see, there are a number of natural language words that we can use for
our tests using both expect and should interfaces. The full list can be found in the
Chai documentation (http://chaijs.com/api/bdd/#-include-value-), but let's
explain some of the most interesting ones in the following list:

• not: This word is used to negate the assertions following in the chain. For
example, expect("some string").to.not.equal("Other String")
will pass.

• deep: This word is one of the most interesting of all the collection. It is
used to deep-compare objects, which is the quickest way to carry on a full
equal comparison. For example, expect(foo).to.deep.equal({name:
"David"}) will succeed if foo is a JavaScript object with one property called
name with the "David" string value.

• any/all: This is used to check whether the dictionary or object contains
any of the keys in the given list so that expect(foo).to.have.any.
keys("name", "surname") will succeed if foo contains any of the given
keys, and expect(foo).to.have.all.keys("name", "surname") will only
succeed if it has all of the keys.

http://chaijs.com/api/bdd/#-include-value-

Testing and Documenting Node.js Microservices

[164]

• ok: This is an interesting one. As you probably know, JavaScript has a few
pitfalls, and one of them is the true/false evaluation of expressions. With ok,
we can abstract all the mess and do something similar to the following list
of expressions:

 ° expect('everything').to.be.ok: 'everything' is a string and it
will be evaluated to ok

 ° expect(undefined).to.not.be.ok: Undefined is not ok in the
JavaScript world, so this assertion will succeed

• above: This is a very useful word to check whether an array or collection
contains a number of elements above a certain threshold, as follows:
expect([1,2,3]).to.have.length.above(2)

As you can see, the Chai API for fluent assertions is quite rich and enables us to write
very descriptive tests that are easy to maintain.

Now, you may be asking yourself, why have two flavors of the same interface that
pretty much work the same? Well, they functionally do the same, however, take a
look at the detail:

• expect provides a starting point in your chainable language
• should extends the Object.prototype signature to add the chainable

language to every single object in JavaScript

From Node.js' point of view, both of them are fine, although the fact that should is
instrumenting the prototype of Object could be a reason to be a bit paranoid about
using it as it is intrusive.

Assertions interface
The assertions interface matches the most common old-fashioned tests assertion
library. In this flavor, we need to be specific about what we want to test, and there
is no such thing as fluent chaining of expressions:

var assert = require('chai').assert;
var myStringVar = 'Here is my string';
// No message:
assert.typeOf(myStringVar, 'string');
// With message:
assert.typeOf(myStringVar, 'string', 'myStringVar is not string
 type.');
// Asserting on length:
assert.lengthOf(myStringVar, 17);

Chapter 6

[165]

There is really nothing more to go in depth if you have already used any of the
existing test libraries in any language.

Mocha
Mocha is, in my opinion, one of the most convenient testing frameworks that I
have ever used in my professional life. It follows the principles of behavior-driven
development testing (BDDT), where the test describes a use case of the application
and uses the assertions from another library to verify the outcome of the executed
code.

Although it sounds a bit complicated, it is really convenient to ensure that our code is
covered from the functional and technical point of view, as we will be mirroring the
requirements used to build the application into automated tests that verifies them.

Let's start with a simple example. Mocha is a bit different from any other library, as
it defines its own domain-specific language (DSL) that needs to be executed with
Mocha instead of Node.js. It is an extension of the language.

First we need to install Mocha in the system:

npm install mocha -g

This will produce an output similar to the following image:

From now on, we have a new command in our system: mocha.

Testing and Documenting Node.js Microservices

[166]

The next step is to write a test using Mocha:

function rollDice() {
 return Math.floor(Math.random() * 6) + 1;
}

require('chai').should();
var expect = require('chai').expect;

describe('When a customer rolls a dice', function(){

 it('should return an integer number', function() {
 expect(rollDice()).to.be.an('number');
 });

 it('should get a number below 7', function(){
 rollDice().should.be.below(7);
 });

 it('should get a number bigger than 0', function(){
 rollDice().should.be.above(0);
 });

 it('should not be null', function() {
 expect(rollDice()).to.not.be.null;
 });

 it('should not be undefined', function() {
 expect(rollDice()).to.not.be.undefined;
 });
});

The preceding example is simple. A function that rolls a dice and returns an
integer number from 1 to 6. Now we need to think a bit about the use cases
and the requirements:

• The number has to be an integer
• This integer has to be below 7
• It has to be above 0, dice don't have negative numbers
• The function cannot return null
• The function cannot return undefined

Chapter 6

[167]

This covers pretty much every corner case about rolling a dice in Node.js. What we
are doing is describing situations that we certainly want to test, in order to safely
make changes to the software without breaking the existing functionality.

These five use cases are an exact map to the tests written earlier:

• We describe the situation: When a customer rolls a dice

• Conditions get verified: It should return an integer number

Let's run the previous test and check the results:

mocha tests.js

This should return something similar to the following screenshot:

As you can see, Mocha returns a comprehensive report on what is going on in the
tests. In this case, all of them pass, so we don't need to be worried about problems.

Let's force some of the tests to fail:

function rollDice() {
 return -1 * Math.floor(Math.random() * 6) + 1;
}

require('chai').should();
var expect = require('chai').expect;

describe('When a customer rolls a dice', function(){

 it('should return an integer number', function() {
 expect(rollDice()).to.be.an('number');
 });

 it('should get a number below 7', function(){

Testing and Documenting Node.js Microservices

[168]

 rollDice().should.be.below(7);
 });

 it('should get a number bigger than 0', function(){
 rollDice().should.be.above(0);
 });

 it('should not be null', function() {
 expect(rollDice()).to.not.be.null;
 });

 it('should not be undefined', function() {
 expect(rollDice()).to.not.be.undefined;
 });
});

Accidentally, someone has bumped a code fragment into the rollDice() function,
which makes the function return a number that does not meet some of the
requirements. Let's run Mocha again, as shown in the following image:

Now, we can see the report returning one error: the method is returning -4, where it
should always return a number bigger than 0.

Also, one of the benefits of this type of testing in Node.js using Mocha and Chai is
the time. Tests run very fast so that it is easy to receive feedback if we have broken
something. The preceding suite ran in 10ms.

Chapter 6

[169]

Sinon.JS – a mocking framework
The previous two chapters have been focused on asserting conditions on return
values of functions, but what happens when our function does not return any value?
The only correct measurement is to check whether the method was called or not.
Also, what if one of our modules is calling a third-party web service, but we don't
want our tests to call the remote server?

For answering these questions, we have two conceptual tools called mocks and spies,
and Node.js has the perfect library to implement them: Sinon.JS.

First install it, as follows:

npm install sinon

The preceding command should produce the following output:

Now let's explain how it works through an example:

function calculateHypotenuse(x, y, callback) {
 callback(null, Math.sqrt(x*x + y*x));
}

calculateHypotenuse(3, 3, function(err, result){
 console.log(result);
});

This simple script calculates the hypotenuse of a triangle, given the length of the
other two sides of the triangle. One of the tests that we want to carry on is the fact
that the callback is executed with the right list of arguments supplied. What we need
to accomplish such task is what Sinon.JS calls a spy:

var sinon = require('sinon');

require('chai').should();

function calculateHypotenuse(x, y, callback) {
 callback(null, Math.sqrt(x*x + y*x));
}

describe("When the user calculates the hypotenuse", function(){

Testing and Documenting Node.js Microservices

[170]

 it("should execute the callback passed as argument", function() {
 var callback = sinon.spy();
 calculateHypotenuse(3, 3, callback);
 callback.called.should.be.true;
 });
});

Once again, we are using Mocha to run the script and Chai to verify the results in the
test through the should interface, as shown in the following image:

The important line in the preceding script is:

var callback = sinon.spy();

Here, we are creating the spy and injecting it into the function as a callback. This
function created by Sinon.JS is actually not only a function, but a full object with a
few interesting points of information. Sinon.JS does that, taking advantage of the
dynamic nature of JavaScript. You can actually see what is in this object by dumping
it into the console with console.log().

Another very powerful tool in Sinon.JS are the stubs. Stubs are very similar to mocks
(identical at practical effects in JavaScript) and allow us to fake functions to simulate
the required return:

var sinon = require('sinon');
var expect = require('chai').expect;

function rollDice() {
 return -1 * Math.floor(Math.random() * 6) + 1;
}
describe("When rollDice gets called", function() {
 it("Math#random should be called with no arguments", function() {
 sinon.stub(Math, "random");
 rollDice();
 console.log(Math.random.calledWith());
 });
})

Chapter 6

[171]

In this case, we have stubbed the Math#random method, which causes the method to
be some sort of overloaded empty function (it does not issue the get call) that records
stats on what or how it was called.

There is one catch in the preceding code: we never restored the random() method
back and this is quite dangerous. It has a massive side effect, as other tests will see
the Math#random method as a stub, not as the original one, and it can lead to us
coding our tests according to invalid information.

In order to prevent this, we need to make use of the before() and after() methods
from Mocha:

var sinon = require('sinon');
var expect = require('chai').expect;

var sinon = require('sinon');
var expect = require('chai').expect;

function rollDice() {
 return -1 * Math.floor(Math.random() * 6) + 1;
}
describe("When rollDice gets called", function() {

 it("Math#random should be called with no arguments", function() {
 sinon.stub(Math, "random");
 rollDice();
 console.log(Math.random.calledWith());
 });
after(function(){
 Math.random.restore();
 });
});

If you pay attention to the highlighted code, we are telling Sinon.JS to restore
the original method that was stubbed inside one of the it blocks, so that if
another describe block makes use of http.get, we won't see the stub, but
the original method.

The before() and after() methods are very helpful to set up and
wind down the context for the tests. However, you need to be careful with
the scope where they are executed as it could lead to test interactions.

Testing and Documenting Node.js Microservices

[172]

Mocha has a few flavors of before and after:

• before(callback): This is executed before the current scope (at the
beginning of the describe block in the preceding code)

• after(callback): This is executed after the current scope (at the end of the
describe block in the preceding code)

• beforeEach(callback): This is executed at the beginning of every element
in the current scope (before each it in the preceding example)

• afterEach(callback): This is executed at the end of every element in the
current scope (after every it in the preceding example)

Another interesting feature in Sinon.JS is the time manipulation. Some of the
tests need to execute periodic tasks or respond after a certain time of an event's
occurrence. With Sinon.JS, we can dictate time as one of the parameters of our tests:

var sinon = require('sinon');
var expect = require('chai').expect

function areWeThereYet(callback) {

 setTimeout(function() {
 callback.apply(this);
 }, 10);

}

var clock;

before(function(){
 clock = sinon.useFakeTimers();
});

it("callback gets called after 10ms", function () {
 var callback = sinon.spy();
 var throttled = areWeThereYet(callback);

 areWeThereYet(callback);

 clock.tick(9);
 expect(callback.notCalled).to.be.true;

 clock.tick(1);

Chapter 6

[173]

 expect(callback.notCalled).to.be.false;
});

after(function(){
 clock.restore();
});

As you can see, we can now control the time in our tests.

Testing a real microservice
Now, it is time to test a real microservice in order to get a general picture of the full
test suite.

Our microservice is going to use Express, and it will filter an input text to remove
what the search engines call stop words: words with less than three characters and words

that are banned.

Let's see the code:

var _ = require('lodash');
var express = require('express');

var bannedWords = ["kitten", "puppy", "parrot"];

function removeStopWords (text, callback) {
 var words = text.split(' ');
 var validWords = [];
 _(words).forEach(function(word, index) {
 var addWord = true;

 if (word.length < 3) {
 addWord = false;
 }

 if(addWord && bannedWords.indexOf(word) > -1) {
 addWord = false;
 }

 if (addWord) {
 validWords.push(word);
 }

 // Last iteration:
 if (index == (words.length - 1)) {

Testing and Documenting Node.js Microservices

[174]

 callback(null, validWords.join(" "));
 }
 });
}
var app = express();

app.get('/filter', function(req, res) {
 removeStopWords(req.query.text, function(err, response){
 res.send(response);
 });
});

app.listen(3000, function() {
 console.log("app started in port 3000");
});

As you can see, the service is pretty small, so it is the perfect example for explaining
how to write unit, integration, and E2E tests. In this case, as we stated before, E2E
and integration tests are going to be the exact same as testing the service through the
REST API will be equivalent to testing the system from the end-to-end point of view,
but also how our component is integrated within the system. Given that, if we were
to add a UI, we would have to split integration tests from E2E in order to ensure
the quality.

TDD – Test-driven development
Our service is done and working. However, now we want to unit test it, but we find
some problems:

• The function that we want to unit test is not visible outside the main .js file
• The server code is tightly coupled to the functional code and has bad cohesion

Here TDD comes to the rescue; we should always ask ourselves "how am I going to
test this function when writing software?" It does not mean that we should modify
our software with the specific purpose of testing, but if you are having problems
while testing a part of your program, more than likely, you should look into
cohesion and coupling, as it is a good indication of problems. Let's take a look
at the following file:

var _ = require('lodash');
var express = require('express');

module.exports = function(options) {

Chapter 6

[175]

 bannedWords = [];
 if (typeof options !== 'undefined') {
 console.log(options);
 bannedWords = options.bannedWords || [];
 }

 return function bannedWords(text, callback) {
 var words = text.split(' ');
 var validWords = [];
 _(words).forEach(function(word, index) {
 var addWord = true;

 if (word.length < 3) {
 addWord = false;
 }

 if(addWord && bannedWords.indexOf(word) > -1) {
 addWord = false;
 }

 if (addWord) {
 validWords.push(word);
 }

 // Last iteration:
 if (index == (words.length - 1)) {
 callback(null, validWords.join(" "));
 }
 });
 }
}

This file is a module that, in my opinion, is highly reusable and has good cohesion:

• We can import it everywhere (even in a browser)
• The banned words can be injected when creating the module (very useful

for testing)
• It is not tangled with the application code

Testing and Documenting Node.js Microservices

[176]

Laying down the code this way, our application module will look similar to the
following:

var _ = require('lodash');
var express = require('express');

var removeStopWords = require('./remove-stop-words')({bannedWords:
 ["kitten", "puppy", "parrot"]});

var app = express();

app.get('filter', function(req, res) {
 res.send(removeStopWords(req.query.text));
});

app.listen(3000, function() {
 console.log("app started in port 3000");
});

As you can see, we have clearly separated the business unit (the function that
captures the business logic) from the operational unit (the setup of the server).

As I mentioned before, I am not a big fan of writing the tests prior to the code, but
they should be written (in my opinion) alongside the code, but always having in
mind the question mentioned before.

There seem to be a push in companies to adopt a TDD methodology, but it could
lead to a significant inefficiency, especially if the business requirements are unclear
(as they are 90% of the time) and we face changes along the development process.

Unit testing
Now that our code is in a better shape, we are going to unit test our function. We will
use Mocha and Chai to accomplish such task:

var removeStopWords = require('./remove-stop-words')({bannedWords:
 ["kitten", "parrot"]});

var chai = require('chai');
var assert = chai.assert;
chai.should();
var expect = chai.expect;

describe('When executing "removeStopWords"', function() {

 it('should remove words with less than 3 chars of length',
 function() {

Chapter 6

[177]

 removeStopWords('my small list of words', function(err,
 response) {
 expect(response).to.equal("small list words");
 });
 });

 it('should remove extra white spaces', function() {
 removeStopWords('my small list of words', function(err,
 response) {
 expect(response).to.equal("small list words");
 });
 });

 it('should remove banned words', function() {
 removeStopWords('My kitten is sleeping', function(err,
 response) {
 expect(response).to.equal("sleeping");
 });
 });

 it('should not fail with null as input', function() {
 removeStopWords(null, function(err, response) {
 expect(response).to.equal("small list words");
 });
 });

 it('should fail if the input is not a string', function() {
 try {
 removeStopWords(5, function(err, response) {});
 assert.fail();
 }
 catch(err) {
 }
 });
});

As you can see, we have covered pretty much every single case and branch inside
our application, but how is our code coverage looking?

Testing and Documenting Node.js Microservices

[178]

Until now, we have mentioned it, but never actually measured it. We are going to
use one tool, called Istanbul, to measure the test coverage:

npm install -g istanbul

This should install Istanbul. Now we need to run the coverage report:

istanbul cover _mocha my-tests.js

This will produce an output similar to the one shown in the following image:

This will also generate a coverage report in HTML, pointing out which lines, functions,
branches, and statements are not being covered, as shown in the following screenshot:

Chapter 6

[179]

As you can see, we are looking pretty well. Our code (not the tests) is actually well
covered, especially if we look into the detailed report for our code file, as shown in
the following image:

We can see that only one branch (the or operator in line 7) is not covered and the if
operator in line 6 never diverted to the else operator.

Testing and Documenting Node.js Microservices

[180]

We also got information about the number of times a line is executed: it is showing
in the vertical bar beside the line number. This information is also very useful to spot
the hot areas of our application where an optimization will benefit the most.

Regarding the right level of coverage, in this example, it is fairly easy to go up to
90%+, but unfortunately, it is not that easy in production systems:

• Code is a lot more complex
• Time is always a constraint
• Testing might not be seen as productive time

However, you should exercise caution when working with a dynamic language. In
Java or C#, calling a function that does not exist results in a compilation time error;
whereas in JavaScript, it will result in a runtime error. The only real barrier is the
testing (manual or automated), so it is a good practice to ensure that at least every
line is executed once. In general code coverage, over 75% should be good enough for
the majority of cases.

End-to-end testing
In order to test our application end to end, we are going to need a server running
it. Usually, end-to-end tests are executed against a controlled environment, such
as a QA box or a pre-production machine, to verify that our about-to-be-deployed
software is behaving as expected.

In this case, our application is an API, so we are going to create the end-to-end tests,
which at the same time, are going to be used as integration tests.

However, in a full application, we might want to have a clear separation between
the integration and end-to-end tests and use something like Selenium to test our
application from the UI point of view.

Selenium is a framework that allows our code to send instructions to the browser,
as follows:

• Click the button with the button1 ID
• Hover over the div element with the CSS class highlighted

In this way, we can ensure that our app flows work as expected, end to end, and our
next release is not going to break the key flows of our app.

Chapter 6

[181]

Let's focus on the end-to-end tests for our microservice. We have been using Chai
and Mocha with their corresponding assertion interfaces to unit test our software,
and Sinon.JS to mock services functions and other elements to avoid the calls being
propagated to third-party web services or get a controlled response from one method.

Now, in our end-to-end test plan, we actually want to issue the calls to our service
and get the response to validate the results.

The first thing we need to do is run our microservice somewhere. We are going
to use our local machine just for convenience, but we can execute these tests in a
continuous development environment against a QA machine.

So, let's start the server:

node stop-words.js

I call my script stop-words.js for convenience. Once the server is running, we
are ready to start testing. In some situations, we might want our test to start and stop
the server so that everything is self-contained. Let's see a small example about how
to do it:

var express = require('express');

var myServer = express();

var chai = require('chai');

myServer.get('/endpoint', function(req, res){
 res.send('endpoint reached');
});

var serverHandler;

before(function(){
 serverHandler = myServer.listen(3000);
});

describe("When executing 'GET' into /endpoint", function(){
 it("should return 'endpoint reached'", function(){
 // Your test logic here. http://localhost:3000 is your server.
 });
});

after(function(){
 serverHandler.close();
});

Testing and Documenting Node.js Microservices

[182]

As you can see, Express provides a handler to operate the server programmatically, so
it is as simple as making use of the before() and after() functions to do the trick.

In our example, we are going to assume that the server is running. In order to
issue the requests, we are going to use a library called request to issue the calls
to the server.

The way to install it, as usual, is to execute npm install request. Once it is
finished, we can make use of this amazing library:

var chai = require('chai');
var chaiHttp = require('chai-http');
var expect = chai.expect;
chai.use(chaiHttp);

describe("when we issue a 'GET' to /filter with text='aaaa bbbb
 cccc'", function(){
 it("should return HTTP 200", function(done) {
 chai.request('http://localhost:3000')
 .get('/filter')
 .query({text: 'aa bb ccccc'}).end(function(req, res){
 expect(res.status).to.equal(200);
 done();
 });
 });
});

describe("when we issue a 'GET' to /filter with text='aa bb
 ccccc'", function(){
 it("should return 'ccccc'", function(done) {
 chai.request('http://localhost:3000')
 .get('/filter')
 .query({text: 'aa bb ccccc'}).end(function(req, res){
 expect(res.text).to.equal('ccccc');
 done();
 });
 });
});

describe("when we issue a 'GET' to /filter with text='aa bb cc'",
 function(){
 it("should return ''", function(done) {
 chai.request('http://localhost:3000')
 .get('/filter')
 .query({text: 'aa bb cc'}).end(function(req, res){

Chapter 6

[183]

 expect(res.text).to.equal('');
 done();
 });
 });
});

With the simple test from earlier, we managed to test our server in a way that
ensures that every single mobile part of the application has been executed.

There is a particularity here that we didn't have before:

 it("should return 'ccccc'", function(done) {
 chai.request('http://localhost:3000')
 .get('/filter')
 .query({text: 'aa bb ccccc'}).end(function(req, res){
 expect(res.text).to.equal('ccccc');
 done();
 });
 });

If you take a look at the highlighted code, you can see a new callback called done.
This callback has one mission: prevent the test from finishing until it is called, so
that the HTTP request has time to be executed and return the appropriated value.
Remember, Node.js is asynchronous, there is no such thing as a thread being blocked
until one operation finishes.

Other than that, we are using a new DSL introduced by chai-http to build
get requests.

This language allows us to build a large range of combinations, consider the
following, for example:

chai.request('http://mydomain.com')
 .post('/myform')
 .field('_method', 'put')
 .field('username', 'dgonzalez')
 .field('password', '123456').end(...)

In the preceding request, we are submitting a form that looks like a login, so that in
the end() function, we can assert the return from the server.

There are an endless number of combinations to test our APIs with chai-http.

Testing and Documenting Node.js Microservices

[184]

Manual testing – the necessary evil
No matter how much effort we put in to our automated testing, there will always be
a number of manual tests executed.

Sometimes, we need to do it just when we are developing our API, as we want to
see the messages going from our client to the server, but some other times, we just
want to hit our endpoints with a pre-forged request to cause the software to execute
as we expect.

In the first case, we are going to take the advantage of Node.js and its dynamic
nature to build a proxy that will sniff all the requests and log them to a terminal
so that we can debug what is going on. This technique can be used to leverage
the communication between two microservices and see what is going on without
interrupting the flow.

In the second case, we are going to use software called Postman to issue requests
against our server in a controlled way.

Building a proxy to debug our microservices
My first contact with Node.js was exactly due to this problem: two servers sending
messages to each other, causing misbehavior without an apparent cause.

It is a very common problem that has many already-working solutions (man-in-the-
middle proxies basically), but we are going to demonstrate how powerful Node.js is:

var http = require('http');
var httpProxy = require('http-proxy');
var proxy = httpProxy.createProxyServer({});

http.createServer(function(req, res) {
 console.log(req.rawHeaders);
 proxy.web(req, res, { target: 'http://localhost:3000' });
}).listen(4000);

If you remember from the previous section, our stop-words.js program was
running on the port 3000. What we have done with this code is create a proxy using
http-proxy, that tunnels all the requests made on the port 4000 into the port 3000
after logging the headers into the console.

If we run the program after installing all the dependencies with the npm install
command in the root of the project, we can see how effectively the proxy is logging
the requests and tunneling them into the target host:

curl http://localhost:4000/filter?text=aaa

Chapter 6

[185]

This will produce the following output:

This example is very simplistic, but this small proxy could virtually be deployed
anywhere in between our microservices and give us very valuable information about
what is going on in the network.

Postman
Out of all the software that we can find on the Internet for testing APIs, Postman is
my favorite. It started as a extension for Google Chrome, but nowadays, has taken
the form of a standalone app built on the Chrome runtime.

It can be found in the Chrome web store, and it is free (so you don't need to pay for
it), although it has a version for teams with more advanced features that is paid.

The interface is very concise and simple, as shown in the following screenshot:

Testing and Documenting Node.js Microservices

[186]

On the left-hand side, we can see the History of requests, as well as the Collections
of requests, which will be very handy for when we are working on a long-term
project and we have some complicated requests to be built.

We are going to use again our stop-words.js microservice to show how powerful
Postman can be.

Therefore, the first thing is to make sure that our microservice is running. Once it is,
let's issue a request from Postman, as shown in the following screenshot:

As simple as that, we have issued the request for our service (using the GET verb)
and it has replied with the text filtered: very simple and effective.

Chapter 6

[187]

Now imagine that we want to execute that call over Node.js. Postman comes with a
very interesting feature, which is generating the code for the requests that we issue
from the interface. If you click on the icon under the save button on the right-hand
side of the window, the appearing screen will do the magic:

Let's take a look at the generated code:

var http = require("http");

var options = {
 "method": "GET",
 "hostname": "localhost",
 "port": "3000",
 "path": "/filter?text=aaa%20bb%20cc",
 "headers": {
 "cache-control": "no-cache",
 "postman-token": "912cacd8-bcc0-213f-f6ff-f0bcd98579c0"
 }
};

var req = http.request(options, function (res) {

Testing and Documenting Node.js Microservices

[188]

 var chunks = [];

 res.on("data", function (chunk) {
 chunks.push(chunk);
 });

 res.on("end", function () {
 var body = Buffer.concat(chunks);
 console.log(body.toString());
 });
});

req.end();

It is quite an easy code to understand, especially if you are familiar with the
HTTP library.

With Postman, we can also send cookies, headers, and forms to the servers in
order to mimic the authentication that an application will fulfill by sending the
authentication token or cookie across.

Let's redirect our request to the proxy that we created in the preceding section, as
shown in the following screenshot:

Chapter 6

[189]

If you have the proxy and the stop-words.js microservice running, you should see
something similar to the following output in the proxy:

The header that we sent over with Postman, my-awesome-header, will show up in
the list of raw headers.

Documenting microservices
In this section, we are going to learn how to use Swagger to document APIs.
Swagger is an API manager that follows the Open API standard, so that it is a
common language for all the API creators. We will discuss how to write definitions
and why it is so important to agree on how to describe resources.

Documenting APIs with Swagger
Documentation is always a problem. No matter how hard you try, it will always
eventually go out of date. Luckily, in the past few years, there has been a push into
producing a high quality documentation for REST APIs.

API managers have played a key role in it, and Swagger is particularly an interesting
platform to look at. More than a module for documentation, Swagger manages your
API in a such way that gives you a holistic view of your work.

Let's start installing it:

npm install -g swagger

Testing and Documenting Node.js Microservices

[190]

This will install Swagger system-wide, so it will be another command in our system.
Now, we need to create a project using it:

swagger project create my-project

This command will allow you to choose different web frameworks. We are going to
choose Express, as it is the one that we have already been using. The output of the
preceding command is shown in the following screenshot:

This screenshot is showing how to start a project with Swagger

Chapter 6

[191]

Now we can find a new folder, called my-project, that looks like the following image:

The structure is self-explanatory and it is the common layout of a Node.js application:

• api: Here, our API code will lay down
• config: All the configuration sits in here
• node_modules: This is a folder with all the dependencies required to run

our application
• test: This is where Swagger has generated some dummy tests and where we

could add our own tests

Swagger comes with an impressive feature: an embedded editor that allows you
to model the endpoints of your API. In order to run it, from within the generated
folder, execute the following command:

Swagger project edit

Testing and Documenting Node.js Microservices

[192]

It will open Swagger Editor in the default browser, with a window similar to the
following image:

Swagger makes use of Yet Another Markup Language (YAML). It is a language that
is very similar to JSON, but with a different syntax.

In this document, we can customize a number of things, such as paths (routes in our
application). Let's take a look at the path generated by Swagger:

/hello:
 # binds a127 app logic to a route
 x-swagger-router-controller: hello_world
 get:
 description: Returns 'Hello' to the caller
 # used as the method name of the controller
 operationId: hello
 parameters:
 - name: name

Chapter 6

[193]

 in: query
 description: The name of the person to whom to say hello
 required: false
 type: string
 responses:
 "200":
 description: Success
 schema:
 # a pointer to a definition
 $ref: "#/definitions/HelloWorldResponse"
 # responses may fall through to errors
 default:
 description: Error
 schema:
 $ref: "#/definitions/ErrorResponse"

The definition is self-documented. Basically, we will configure the parameters used
by our endpoint, but in a declarative way. This endpoint is mapping the incoming
actions into the hello_world controller, and specifically into the hello method,
which is defined by the id operation. Let's see what Swagger has generated for us in
this controller:

'use strict';

var util = require('util');

module.exports = {
 hello: hello
};

function hello(req, res) {
 var name = req.swagger.params.name.value || 'stranger';
 var hello = util.format('Hello, %s!', name);
 res.json(hello);
}

This code can be found in the api/controllers folder of the project. As you can
see, it is a pretty standard Express controller packed as a module (well-cohesioned).
The only strange line is the first one in the hello function, where we pick up the
parameters from Swagger. We will come back to this later, once we run the project.

Testing and Documenting Node.js Microservices

[194]

The second part of the endpoint is the responses. As we can see, we are referencing
two definitions: HelloWorldResponse for http code 200 and ErrorResponse for
the rest of the codes. These objects are defined in the following code:

definitions:
 HelloWorldResponse:
 required:
 - message
 properties:
 message:
 type: string
 ErrorResponse:
 required:
 - message
 properties:
 message:
 type: string

This is something really interesting, although we are using a dynamic language, the
contract is being defined by Swagger so that we have a language-agnostic definition
that can be consumed by a number of different technologies, respecting the principle of
technology heterogeneity that we were talking about earlier in Chapter 1, Microservices

Architecture, and Chapter 2, Microservices in Node.js – Seneca and PM2 Alternatives.

After explaining how the definition works, it is time to start the server:

swagger project start

This should produce an output that is very similar to the following code:

Starting: C:\my-project\app.js...

 project started here: http://localhost:10010/

 project will restart on changes.

 to restart at any time, enter `rs`

try this:

curl http://127.0.0.1:10010/hello?name=Scott

Chapter 6

[195]

Now, if we follow the instructions of the output and execute the curl command, we
get the following output:

curl http://127.0.0.1:10010/hello?name=David

"Hello David!"

Swagger is binding the name query parameter to the Swagger parameter specified
in the YAML definition. This may sound bad, as we are coupling our software
to Swagger, but it gives you an immense benefit: Swagger allows you to test the
endpoint through the editor. Let's see how it works.

On the right-hand side of the editor, you can see a button with the Try this operation
label, as shown in the following screenshot:

Testing and Documenting Node.js Microservices

[196]

Once you click it, it will present you a form that allows you to test the endpoint, as
shown in the following screenshot:

There is a warning message on this form about cross-origin requests. We don't need
to worry about it when developing in our local machine; however, we could have
problems when testing other hosts using the Swagger Editor.

For more information, visit the following URL:
https://en.wikipedia.org/wiki/Cross-origin_
resource_sharing

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Chapter 6

[197]

Enter a value for the name parameter, and after that, click on Send Request, as
shown in the following image:

This is a response example using Swagger Editor to test the endpoint

Be aware that, for this test to work, our app server has to be up and running.

Generating a project from the Swagger
definition
Until now, we have been playing with Swagger and the generated project, but we are
now going to generate the project from the swagger.yaml file. We will use the already
generated project as a starting point, but we will add a new endpoint:

swagger: "2.0"
info:
 version: "0.0.1"
 title: Stop Words Filtering App
host: localhost:8000
basePath: /
schemes:
 - http
 - https

Testing and Documenting Node.js Microservices

[198]

consumes:
 - application/json
produces:
 - application/json
paths:
 /stop-words:
 x-swagger-router-controller: stop_words
 get:
 description: Removes the stop words from an arbitrary input
 text.
 operationId: stopwords
 parameters:
 - name: text
 in: query
 description: The text to be sanitized
 required: false
 type: string
 responses:
 "200":
 description: Success
 schema:
 $ref: "#/definitions/StopWordsResponse"
 /swagger:
 x-swagger-pipe: swagger_raw
definitions:
 StopWordsResponse:
 required:
 - message
 properties:
 message:
 type: string

This endpoint might sound very familiar to you, as we unit tested it earlier in this
chapter. As you probably know by now, the Swagger Editor is quite cool: it provides
feedback as you type on, about what is going on in the YAML file, as well as saves
the changes.

The next step is to download the Swagger code generator from https://github.
com/swagger-api/swagger-codegen. It is a Java project, so we are going to need
the Java SDK and Maven to build it, as follows:

mvn package

https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-codegen

Chapter 6

[199]

Codegen is a tool that allow us to read the API definition from the Swagger YAML
and build the basic structure for a project in a language of our choice, in this case,
Node.js.

The preceding command in the root of the project should build all the submodules.
Now, it is as easy as executing the following command in the root of the swagger-
codegen folder:

java -jar modules/swagger-codegen-cli/target/swagger-codegen-cli.jar
generate -i my-project.yaml -l nodejs -o my-project

The Swagger code generator supports a number of languages. Here, the trick is that
when using it for microservices, we can define the interface and then use the most
appropriate technology to build our service.

If you go to the my-project folder, you should find the full structure of the project in
there, ready to start coding.

Summary
In this chapter, you learned how to test and document microservices. It is usually
the forgotten activity in software development, due to the pressures to deliver new
functionalities, but in my opinion, it is a risky decision. We have to find the balance
between too much and very little testing. In general, we will always try to find the
right proportion for unit, integration and end-to-end tests.

You also learned about manual testing and the tools to efficiently test our software
manually (there is always a component of manual testing).

Another interesting point is the documentation and API management. In this case,
we got to know Swagger, which is probably the most popular API manager that led
to the creation of the Open API standard.

If you want to go deeper in to the API world (there is a lot to learn in order to build
a practical and efficient API), you should probably browse http://apigee.com.
Apigee are a company expert on building APIs and providing tools for developers
and enterprises that could help you to build a better API.

http://apigee.com

[201]

Monitoring Microservices

Monitoring servers is always a controversial subject. It usually falls under system
administration, and software engineers don't even go near it, but we are losing one
of the huge benefits of monitoring: the ability to react quickly to failures. By monitoring
our system very closely, we can be aware of problems almost immediately so that
the actions to correct the problem may even save us from impacting the customers.
Along with monitoring, there is the concept of performance. By knowing how our
system behaves during load periods, we will be able to anticipate the necessity of
scaling the system. In this chapter, we will discuss how to monitor servers, and
specifically microservices, in order to maintain the stability of our system.

In this chapter, we will cover the following topics:

• Monitoring services
• Monitoring using PM2 and Keymetrics
• Monitoring metrics
• Simian Army – the active monitoring from Spotify
• Throughput and performance degradation

Monitoring services
When monitoring a microservice, we are interested in a few different types
of metrics. The first big group of metrics is the hardware resources, which are
described as follows:

• Memory metrics: This indicates how much memory is left in our system or
consumed by our application

• CPU utilization: As the name suggests, this indicates how much CPU are we
using at a given time

• Disk utilization: This indicates the I/O pressure in the physical hard drives

Monitoring Microservices

[202]

The second big group is the application metrics, as follows:

• Number of errors per time unit
• Number of calls per time unit
• Response time

Even though both groups are connected and a problem in the hardware will impact
the application performance (and the other way around), knowing all of them is
a must.

Hardware metrics are easy to query if our server is a Linux machine. On Linux,
all the magic of hardware resources happens in the /proc folder. This folder is
maintained by the kernel of the system and contains files about how the system
behaves regarding a number of aspects in the system.

Software metrics are harder to collect and we are going to use Keymetrics from the
creators of PM2 to monitor our Node.js applications.

Monitoring using PM2 and Keymetrics
PM2, as we've seen before, is a very powerful instrument to run Node applications,
but it is also very good at monitoring standalone applications in production servers.
However, depending on your business case, it is not always easy to get access to
the production.

The creators of PM2 have solved this problem by creating Keymetrics. Keymetrics
is a Software as a service (SaaS) component that allows PM2 to send monitoring
data across the network to its website, as shown in the following image (as found
at https://keymetrics.io/):

https://keymetrics.io/

Chapter 7

[203]

Even though Keymetrics is not free, it provides a free tier to demonstrate how it
works. We are going to use it in this chapter.

The very first thing that we need to do is register a user. Once we get access to our
account, we should see something similar to the following screen:

This screen is asking us to create a bucket. Keymetrics uses the bucket concept to
define a context. For example, if our organization has different areas (payments,
customer service, and so on) with different servers on each area, we could monitor
all the servers in one bucket. There are no restrictions on how many servers you can
have in one bucket. It is even possible to have all the organization in the same bucket
so that everything is easy to access.

Monitoring Microservices

[204]

Let's create a bucket called Monitoring Test, as shown in the following image:

Easy, once we tap on Create Bucket, Keymetrics will show us a screen with the
information needed to start monitoring our app, as shown in the following image:

Chapter 7

[205]

As you can see, the screen displays information about the private key used by
Keymetrics. Usually, it is a very bad idea to share this key with anyone.

As shown on the screen, the next step is to configure PM2 to push data into
Keymetrics. There is also useful information about the networking needed
to make Keymetrics work:

• PM2 will be pushing data to the port 80 on Keymetrics
• Keymetrics will be pushing data back to us on the port 43554

Usually, in large organizations, there are restrictions about the networking, but if
you are testing this from home, everything should work straightaway.

In order to make PM2 able to send metrics to Keymetrics, we need to install one PM2
module called pm2-server-monit. This is a fairly easy task:

pm2 install pm2-server-monit

This will result in an output similar to the following:

Let's run the advised command:

pm2 link fan7p32fnysuuw8 znlz25frrcwakg6 my-server

Monitoring Microservices

[206]

In this case, I have replaced [server name] with my-server. There are no
restrictions on the server name; however, when rolling out Keymetrics into a real
system, it is recommended to choose a descriptive name in order to easily identify
the server in the dashboard.

The preceding command will produce an output similar to the following image:

This is an indication that everything went well and our application is ready to be
monitored from Keymetrics that can be checked on https://app.keymetrics.io/,
as follows:

Now, our server is showing up in the interface. As we previously stated, this bucket
could monitor different servers. A simple virtual machine is created, and as you can
see at the bottom of the screen, Keymetrics provides us with the command to be
executed in order to add another server. In this case, as we are using the free access
to Keymetrics, so we can only monitor one server.

Let's see what Keymetrics can offer us. At first sight, we can see interesting metrics
such as CPU usage, memory available, disk available, and so on.

https://app.keymetrics.io/

Chapter 7

[207]

All these are hardware metrics that indicate how our system is behaving. Under
pressure, they are the perfect indicator to point out the need for more hardware
resources.

Usually, the hardware resources are the main indicator of failure in an application.
Now, we are going to see how to use Keymetrics to diagnose the problem.

Diagnosing problems
A memory leak is usually a difficult problem to solve due to the nature of the flaw.
Take a look at the following code.

Let's run the program using a simple seneca.act() action:

var seneca = require('seneca')();

var names = [];

seneca.add({cmd: 'memory-leak'}, function(args, done){
 names.push(args.name);
 greetings = "Hello " + args.name;
 done(null ,{result: greetings});
});

seneca.act({cmd: 'memory-leak', name: 'David'}, function(err,
 response) {
 console.log(response);
});

This program has a very obvious memory leak, and by obvious, I mean that it
is written to be obvious. The names array will keep growing indefinitely. In the
preceding example, it is not a big deal due to the fact that our application is a
script that will start and finish without keeping the state in memory.

Remember that JavaScript allocates variables in the
global scope if the var keyword is not used.

The problem comes when someone else reutilizes our code in a different part of
the application.

Monitoring Microservices

[208]

Let's assume that our system grows to a point that we need a microservice to greet
new customers (or deliver the initial payload of personal information such as name,
preferences, configuration, and so on). The following code could be a good example
on how to build it:

var seneca = require('seneca')();

var names = [];

seneca.add({cmd: 'memory-leak'}, function(args, done){
 names.push(args.name);
 greetings = "Hello " + args.name;
 done(null ,{result: greetings});
});

seneca.listen(null, {port: 8080});

In this example, Seneca will be listening over HTTP for requests from Seneca clients
or other types of systems such as curl. When we run the application:

node index.js

2016-02-14T13:30:26.748Z szwj2mazorea/1455456626740/40489/- INFO hello
Seneca/1.1.0/szwj2mazorea/1455456626740/40489/-

2016-02-14T13:30:27.003Z szwj2mazorea/1455456626740/40489/- INFO listen
{port:8080}

Then from another terminal, we use curl to act as a client of our microservice,
everything will work smoothly and our memory leak will go unnoticed:

curl -d '{"cmd": "memory-leak", "name":"David"}' http://127.0.0.1:8080/
act

{"result":"Hello David"}%

However, we are going to use Keymetrics to find the problem. The first thing we
need to do is run our program using PM2. In order to do it so, we run the following
command:

pm2 start index.js

Chapter 7

[209]

This command will produce the following output:

Let's explain the output in the following:

• The first line gives us information about the integration with Keymetrics.
Data such as public key, server name, and the URL to access Keymetrics.

• In the first table, we can see the name of the application running, as well as
few statistics on memory, uptime, CPU, and so on.

• In the second table, we can see the information relevant to the pm2-server-
monit PM2 module.

Now, let's go to Keymetrics and see what has happened:

The application is now registered in Keymetrics as it can be seen in the control panel

Monitoring Microservices

[210]

As you can see, now our application is showing up in Keymetrics.

Straightaway, we can see the very useful things about our app. One of these is the
memory used. This is the metric that will indicate a memory leak, as it will keep
growing.

Now, we are going to force the memory leak to cause a problem in our application.
In this case, the only thing that we need to do is start our server (the small
application that we wrote before) and issue a significant number of requests:

for i in {0..100000}
do
 curl -d '{"cmd": "memory-leak", "name":"David"}'
 http://127.0.0.1:8080/act
done

As simple as the small bash script, this is all it takes to open Pandora's Box in
our application:

The application is now showing a high load (36% of CPU and an increased use of memory up to 167 MB)

Chapter 7

[211]

The preceding image shows the impact of running the loop of requests in our system.
Let's explain it in the following:

• The CPU in our application has gone to 11% with an average loop delay of
1.82 milliseconds. Regarding our system, the overall CPU utilization has
gone up to 36.11% due to the fact that both the application and bash script
use a significant amount of resources.

• The memory consumption has soared from 81.9 MB to 167.6 MB. As you
can see, the line on the graph of memory allocation is not going straight up,
and that is due to garbage collections. A garbage collection is an activity
within the Node.js framework where unreferenced objects are freed from the
memory, allowing our system to reuse the hardware resources.

• Regarding the errors, our application has been stable with 0 errors (we'll
come back to this section later).

Now, once our bash script is finished (I stopped it manually, as it can take a
significant amount of resources and time to finish), we can again see what happened
to our system in the following screenshot:

Monitoring Microservices

[212]

We can see that the CPU has gone back to normal, but what about the memory?
The memory consumed by our application hasn't been freed due to the fact that our
program has a memory leak, and as long as our variable is referencing the memory
consumed (remember the names array is accumulating more and more names), it
won't be freed.

In this case, we have a very simple example that clearly shows where the memory
leak is, but in complex applications, it is not always obvious. This error, in particular,
could never show up as a problem due to the fact that we probably deploy new
versions of our app often enough to not realize it.

Monitoring application exceptions
Application errors are events that occur when our application can't handle an
unexpected situation. Things such as dividing a number by zero or trying to access
an undefined property of our application usually leads to these type of problems.

When working on a multithreaded framework (language) such as Tomcat, the fact
that one of our threads dies due to an exception usually only affects to one customer
(the one holding the thread). However, in Node.js, a bubbled exception could be a
significant problem as our application dies.

PM2 and Seneca do a very good job at keeping it alive as PM2 will restart our app
if something makes it stop, and Seneca won't let the application die if an exception
occurs in one of the actions.

Keymetrics has developed a module called pmx that we can use to programmatically
get alerts on errors:

var seneca = require('seneca')();

var pmx = require('pmx');

var names = [];

seneca.add({cmd: 'exception'}, function(args, done){
 pmx.notify(new Error("Unexpected Exception!"));

 done(null ,{result: 100/args.number});
});

seneca.listen({port: 8085});

Chapter 7

[213]

It is easy and self-descriptive: an action that sends an exception to Keymetrics if the
number sent as a parameter is zero. If we run it, we will get the following output:

Now we need to hit the server in order to cause the error. As we did earlier, we will
do this using curl:

curl -d '{"cmd": "exception", "number": "0"}' http://localhost:8085/act

{"result":null}%

Now, when we go to Keymetrics, we can see that there is an error logged, as shown
in the following image:

Another interesting point of Keymetrics is the configuration of alerts. As PM2 sends
data about pretty much every metric in our system, we have the ability to configure
Keymetrics on the thresholds that we consider healthy for our application.

Monitoring Microservices

[214]

This is very handy as we could get the notifications integrated in our corporate chat
(something similar to Slack) and be alerted real time when something is not going
correctly in our application.

Custom metrics
Keymetrics also allows us to use probes. A probe is a custom metric that is sent
programmatically by the application to Keymetrics.

There are different types of values that the native library from Keymetrics allows us
to push directly. We are going to see the most useful ones.

Simple metric
A simple metric is, as its name indicates, a very basic metric where the developer can
set the value to the data sent to Keymetrics:

var seneca = require('seneca')();
var pmx = require("pmx").init({
 http: true,
 errors: true,
 custom_probes: true,
 network: true,
 ports: true
});
var names = [];
var probe = pmx.probe();

var meter = probe.metric({
 name : 'Last call'
});

seneca.add({cmd: 'last-call'}, function(args, done){
 console.log(meter);
 meter.set(new Date().toISOString());
 done(null, {result: "done!"});
});

seneca.listen({port: 8085});

Chapter 7

[215]

In this case, the metric will send the time when the action was called for the last time
to the Keymetrics:

The configuration for this metric is non-existent:

var probe = pmx.probe();

var meter = probe.metric({
 name : 'Last call'
});

There is no complexity in this metric.

Counter
This metric is very useful to count how many times an event occurred:

var seneca = require('seneca')();
var pmx = require("pmx").init({
 http: true,
 errors: true,
 custom_probes: true,
 network: true,
 ports: true
});
var names = [];
var probe = pmx.probe();

var counter = probe.counter({
 name : 'Number of calls'
});

seneca.add({cmd: 'counter'}, function(args, done){
 counter.inc();
 done(null, {result: "done!"});
});

seneca.listen({port: 8085});

Monitoring Microservices

[216]

In the preceding code, we can see how the counter is incremented for every single
call to the action counter.

This metric will also allow us to decrement the value calling the dec() method on
the counter:

counter.dec();

Average calculated values
This metric allows us to record when an event occurs, and it will automatically
calculate the number of events per time unit. It is quite useful to calculate averages
and is a good tool to measure the load in the system. Let's see a simple example,
as follows:

var seneca = require('seneca')();
var pmx = require("pmx").init({
 http: true,
 errors: true,
 custom_probes: true,
 network: true,
 ports: true
});
var names = [];
var probe = pmx.probe();

var meter = probe.meter({
 name : 'Calls per minute',
 samples : 60,
 timeframe : 3600
});

seneca.add({cmd: 'calls-minute'}, function(args, done){
 meter.mark();
 done(null, {result: "done!"});
});

seneca.listen({port: 8085});

The preceding code creates a probe and sends a new metric called Calls per
minute to Keymetrics.

Chapter 7

[217]

Now, if we run the application and the following command a few times, the metric is
shown in the following Keymetrics interface:

curl -d '{"cmd": "calls-minute"}' http://localhost:8085/act

As you can see, there is a new metric called Calls per minute in the UI. The key to
configure this metric is in the following initialization:

var meter = probe.meter({
 name : 'Calls per minute',
 samples : 60,
 timeframe : 3600
});

As you can see, the name of the metric is in the configuration dictionary as well as in
two parameters: samples and timeframe.

The samples parameter correspond to the interval where we want to rate the metric;
in this case, it is the number of calls per minute so that rate is 60 seconds.

The timeframe parameter, on the other hand, is for how long we want Keymetrics to
hold the data for, or to express in simpler words, it is the timeframe over which the
metric will be analyzed.

Monitoring Microservices

[218]

Simian Army – the active monitoring from
Spotify
Spotify is one of the companies of reference when building microservices-oriented
applications. They are extremely creative and talented when it boils down to coming
up with new ideas.

One of my favourite ideas among them is what they call the Simian Army. I like to
call it active monitoring.

In this book, I have talked a lot times about how humans fail at performing different
tasks. No matter how much effort you put in to creating your software, there are
going to be bugs that will compromise the stability of the system.

This is a big problem, but it becomes a huge deal when, with the modern cloud
providers, your infrastructure is automated with a script.

Think about it, what happens if in a pool of thousand servers, three of them have
the time zone out of sync with the rest of the servers? Well, depending on the nature
of your system, it could be fine or it could be a big deal. Can you imagine your bank
giving you a statement with disordered transactions?

Spotify has solved (or mitigated) the preceding problem by creating a number of
software agents (a program that moves within the different machines of our system),
naming them after different species of monkeys with different purposes to ensure the
robustness of their infrastructure. Let's explain it a bit further.

As you are probably aware, if you have worked before with Amazon Web Services,
the machines and computational elements are divided in to regions (EU, Australia,
USA, and so on) and inside every region, there are availability zones, as shown in the
following diagram:

Chapter 7

[219]

This enables us, the engineers, to create software and infrastructure without hitting
what we call a single point of failure.

A single point of failure is a condition in a system where the
failure of a single element will cause the system to misbehave.

Monitoring Microservices

[220]

This configuration raised a number of questions to the engineers in Spotify,
as follows:

• What happens if we blindly trust our design without testing whether we
actually have any point of failures or not?

• What happens if a full availability zone or region goes down?
• How is our application going to behave if there is an abnormal latency for

some reason?

To answer all these questions, Netflix has created various agents. An agent is a
software that runs on a system (in this case, our microservices system) and carries on
different operations such as checking the hardware, measuring the network latency,
and so on. The idea of agent is not new, but until now, its application was nearly a
futuristic subject. Let's take a look at the following agents created by Netflix:

• Chaos Monkey: This agent disconnects healthy machines from the network
in a given availability zone. This ensures that there are no single points of

failures within an availability zone. So that if our application is balanced across
four nodes, when the Chaos Monkey kicks in, it will disconnect one of these
four machines.

• Chaos Gorilla: This is similar to Chaos Monkey, Chaos Gorilla will
disconnect a full availability zone in order to verify that Netflix services
rebalance to the other available zones. In other words, Chaos Gorilla is the
big brother of Chaos Monkey; instead of operating at the server level, it
operates at the partition level.

• Latency Monkey: This agent is responsible for introducing artificial latencies
in the connections. Latency is usually something that is hardly considered
when developing a system, but it is a very delicate subject when building a
microservices architecture: latency in one node could compromise the quality
of the full system. When a service is running out of resources, usually the
first indication is the latency in the responses; therefore, Latency Monkey is a

good way to find out how our system will behave under pressure.
• Doctor Monkey: A health check is an endpoint in our application that

returns an HTTP 200 if everything is correct and 500 error code if there
is a problem within the application. Doctor Monkey is an agent that will
randomly execute the health check of nodes in our application and report the
faulty ones in order to replace them.

• 10-18 Monkey: Organizations such as Netflix are global, so they need to be
language-aware (certainly, you don't want to get a website in German when
your mother tongue is Spanish). The 10-18 Monkey reports on instances that
are misconfigured.

Chapter 7

[221]

There are a few other agents, but I just want to explain active monitoring to you.
Of course, this type of monitoring is out of reach of small organizations, but it
is good to know about their existence so that we can get inspired to set up our
monitoring procedures.

The code is available under Apache License in the following repository:
https://github.com/Netflix/SimianArmy.

In general, this active monitoring follows the philosophy of fail early, of which, I am
a big adept. No matter how big the flaw in your system is or how critical it is, you
want to find it sooner than later, and ideally, without impacting any customer.

Throughput and performance degradation
Throughput is to our application what the monthly production is to a factory. It
is a unit of measurement that gives us an indication about how our application is
performing and answers the how many question of a system.

Very close to throughput, there is another unit that we can measure: latency.

Latency is the performance unit that answers the question of how long.

Let's consider the following example:

Our application is a microservices-based architecture that is responsible for
calculating credit ratings of applicants to withdraw a mortgage. As we have a large
volume of customers (a nice problem to have), we have decided to process the
applications in batches. Let's draw a small algorithm around it:

var seneca = require('seneca')();
var senecaPendingApplications = require('seneca').client({type:
 'tcp',
 port: 8002,
 host: "192.168.1.2"});
 var senecaCreditRatingCalculator =
 require('seneca').client({type: 'tcp',
 port: 8002,
 host: "192.168.1.3"});

seneca.add({cmd: 'mortgages', action: 'calculate'}, function(args,
callback) {
 senecaPendingApplications.act({
 cmd: 'applications',
 section: 'mortgages',

https://github.com/Netflix/SimianArmy

Monitoring Microservices

[222]

 custmers: args.customers}, function(err, responseApplications) {
 senecaCreditRatingCalculator.act({cmd: 'rating',
 customers: args.customers}, function(err, response) {

 processApplications(response.ratings,
 responseApplications.applications,
 args.customers
);
 });
 });
});

This is a small and simple Seneca application (this is only theoretical, don't try to run
it as there is a lot of code missing!) that acts as a client for two other microservices,
as follows:

• The first one gets the list of pending applications for mortgages
• The second one gets the list of credit rating for the customers that we have

requested

This could be a real situation for processing mortgage applications. In all fairness,
I worked on a very similar system in the past, and even though it was a lot more
complex, the workflow was very similar.

Let's talk about throughput and latency. Imagine that we have a fairly big batch of
mortgages to process and the system is misbehaving: the network is not being as fast
as it should and is experiencing some dropouts.

Some of these applications will be lost and will need to be retried. In ideal conditions,
our system is producing a throughput of 500 applications per hour and takes an
average of 7.2 seconds on latency to process every single application. However,
today, as we stated before, the system is not at its best; we are processing only 270
applications per hour and takes on average 13.3 seconds to process a single mortgage
application.

As you can see, with latency and throughput, we can measure how our business
transactions are behaving with respect to the previous experiences; we are operating
at 54% of our normal capacity.

This could be a serious issue. In all fairness, a drop off like this should ring all the
alarms in our systems as something really serious is going on in our infrastructure;
however, if we have been smart enough while building our system, the performance
will be degraded, but our system won't stop working. This can be easily achieved by
the usage of circuit breakers and queueing technologies such as RabbitMQ.

Chapter 7

[223]

Queueing is one of the best examples to show how to apply human behavior to an
IT system. Seriously, the fact that we can easily decouple our software components
having a simple message as a joint point, which our services either produce or
consume, gives us a big advantage when writing complex software.

Other advantage of queuing over HTTP is that an HTTP message is lost if there is a
network drop out.

We need to build our application around the fact that it is either full success or
error. With queueing technologies such as RabbitMQ, our messaging delivery is
asynchronous so that we don't need to worry about intermittent failures: as soon as we

can deliver the message to the appropriate queue, it will get persisted until the client is able to

consume it (or the message timeout occurs).

This enables us to account for intermittent errors in the infrastructure and build even
more robust applications based on the communication around queues.

Again, Seneca makes our life very easy: the plugin system on which the Seneca
framework is built makes writing a transport plugin a fairly simple task.

RabbitMQ transport plugin can be found in the following GitHub
repository:
https://github.com/senecajs/seneca-rabbitmq-transport

There are quite few transport plugins and we can also create our own
ones (or modify the existing ones!) to satisfy our needs.

If you take a quick look at the RabbitMQ plugin (just as an example), the only
thing that we need to do to write a transport plugin is overriding the following
two Seneca actions:

• seneca.add({role: 'transport', hook: 'listen', type:
'rabbitmq'}, ...)

• seneca.add({role: 'transport', hook: 'client', type:
'rabbitmq'}, ...)

Using queueing technologies, our system will be more resilient against intermittent

failures and we would be able to degrade the performance instead of heading into a
catastrophic failure due to missing messages.

https://github.com/senecajs/seneca-rabbitmq-transport

Monitoring Microservices

[224]

Summary
In this chapter, we deep dived into PM2 monitoring through Keymetrics. We learned
how to put tight monitoring in place so that we are quickly informed about the
failures in our application.

In the software development life cycle, the QA phase is, in my opinion, one of the
most important one: no matter how good your code looks, if it does not work, it is
useless. However, if I have to choose another phase where engineers should put
more emphasis, it would be the deployment, and more specifically, the monitoring
that is carried out after every deployment. If you receive error reports immediately,
chances are that the reaction can be quick enough to avoid bigger problems such as
corrupted data or customers complaining.

We also saw an example of active monitoring carried out by Netflix on their systems,
which even though might be out of the reach of your company, it can spark good
ideas and practices in order to monitor your software.

Keymetrics is just an example that fits the bill for Node.js as it is extremely well
integrated with PM2, but there are also other good monitoring systems such as
AppDynamics, or if you want to go for an in-house software, you could use Nagios.
The key is being clear about what you need to monitor in the application, and then,
find the best provider.

Another two good options for monitoring Node.js apps are StrongLoop and
New Relic. They are both on the same line with Keymetrics, but they work better
for large-scale systems, especially StrongLoop, which is oriented to applications
written in Node.js and oriented to microservices.

[225]

Deploying Microservices

In this chapter, we are going to deploy microservices. We will use different
technologies in order to provide the reader with the knowledge required to choose
the right tool for every job. First, we will use PM2 and its deployment capabilities
to run applications in remote servers. Then, we will play around Docker, which is
one of the most advanced deployment platforms, and the entire ecosystem around
containers. In this chapter, we will show how to automate all the deployments as
highly as possible.

Concepts in software deployment
Deployments are usually the ugly friend of the Software Development Life Cycle
(SDLC) party. There is a missing contact point between development and systems
administration that DevOps is going to solve in the next few years. The cost of fixing
bugs at different stages of SDLC is shown in the following figure:

This diagram shows the cost of fixing a bug, depending on the stage of the SDLC

Deploying Microservices

[226]

Fail early is one of my favorite concepts in the lean methodology. In the change
management world, the cost of fixing a bug in the different stages of the software
life cycle is called the cost of change curve.

Roughly, fixing a bug in production is estimated to cost 150 times the resources as
compared to the costs to fix it when taking requirements.

No matter what the figure is, which depends a lot on the methodology and
technology that we use, the lesson learned is that we can save a lot of time by
catching bugs early.

From the continuous integration up to continuous delivery, the process should be
automated as much as possible, where as much as possible means 100%. Remember,
humans are imperfect and more prone to errors while carrying out manual repetitive
tasks.

Continuous integration
Continuous integration (CI) is the practice of integrating the work from different
branches on daily basis (or more than once a day) and validating that the changes
do not break existing features by running integration and unit tests.

CI should be automated using the same infrastructure configuration as we will
be using later in pre-production and production, so if there is any flaw, it can be
caught early.

Continuous delivery
Continuous delivery (CD) is a software engineering approach that aims to build
small, testable, and easily deployable pieces of functionality that can be delivered
seamlessly at any time.

This is what we are aiming for with the microservices. Again, we should be pushing
to automate the delivery process as, if we are doing it manually, we are only looking
for problems.

When talking from the microservices' perspective, automation on deployments is
the key. We need to tackle the overhead of having a few dozen of services instead of
a few machines, or we can find ourselves maintaining a cloud of services instead of
adding value to our company.

Docker is our best ally here. With Docker, we are reducing the hassle of deploying
a new software to pretty much moving a file (a container) around in different
environments, as we will see later in this chapter.

Chapter 8

[227]

Deployments with PM2
PM2 is an extremely powerful tool. No matter what stage of development we are in,
PM2 always has something to offer.

In this phase of software development, the deployment is where PM2 really shines.
Through a JSON configuration file, PM2 will manage a cluster of applications so that
we can easily deploy, redeploy, and manage applications on remote servers.

PM2 – ecosystems
PM2 calls a group of applications ecosystem. Every ecosystem is described by a
JSON file, and the easiest way to generate it is executing the following command:

pm2 ecosystem

This should output something similar to the following code:

[PM2] Spawning PM2 daemon

[PM2] PM2 Successfully daemonized

File /path/to/your/app/ecosystem.json generated

The content of the ecosystem.json file varies, depending on the version of PM2, but
what this file contains is the skeleton of a PM2 cluster:

{
 apps : [

 {
 name : "My Application",
 script : "app.js"
 },

 {
 name : "Test Web Server",
 script : "proxy-server.js"
 }
],

*/
 deploy : {
 production : {
 user : "admin",
 host : "10.0.0.1",

Deploying Microservices

[228]

 ref : "remotes/origin/master",
 repo : "git@github.com:the-repository.git",
 path : "/apps/repository",
 "post-deploy" : "pm2 startOrRestart ecosystem.json --env
 production"
 },
 dev : {
 user : "devadmin",
 host : "10.0.0.1",
 ref : "remotes/origin/master",
 repo : "git@github.com:the-repository.git",
 path : "/home/david/development/test-app/",
 "post-deploy" : "pm2 startOrRestart ecosystem.json --env
 dev",
 }
 }
}

This file contains two applications configured for two environments. We are going to
modify this skeleton to adapt it to our needs, modeling our entire ecosystem written
in Chapter 4, Writing Your First Microservice in Node.js.

However, for now, let's explain a bit for the configuration:

• We have an array of applications (apps) defining two apps: API and WEB
• As you can see, we have a few configuration parameters for each app:

 ° name: This is the name of the application
 ° script: This is the startup script of the app
 ° env: These are the environment variables to be injected into the

system by PM2
 ° env_<environment>: This is same as env, but it is tailored per

environment

• There are two environments defined in the default ecosystem under the
deploy key, as follows:

 ° production

 ° dev

As you can see, between these two environments, there are no significant changes
except for the fact that we are configuring one environment variable in development
and the folder where we deploy our application.

Chapter 8

[229]

Deploying microservices with PM2
In Chapter 4, Writing Your First Microservice in Node.js, we wrote a simple e-commerce
in order to show the different concepts and common catches in microservices.

Now, we are going to learn how to deploy them using PM2.

Configuring the server
First thing we need to do in order to deploy software with PM2 is to configure the
remote machine and local machine to be able to talk using SSH, with a public/private
key schema.

The way of doing it is easy, as follows:

• Generate one RSA key
• Install it into the remote server

Let's do it:

ssh-keygen -t rsa

That should produce something similar to the following output:

Generating public/private rsa key pair.

Enter file in which to save the key (/Users/youruser/.ssh/id_rsa): /
Users/youruser/.ssh/pm2_rsa

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in pm2_rsa.

Your public key has been saved in pm2_rsa.pub.

The key fingerprint is:

eb:bc:24:fe:23:b2:6e:2d:58:e4:5f:ab:7b:b7:ee:38 dgonzalez@yourmachine.
local

The key's randomart image is:

+--[RSA 2048]----+

| |

| |

| |

| . |

| o S |

| o .. |

Deploying Microservices

[230]

| o o..o. |

| . +.+=E.. |

| oo++**B+. |

+-----------------+

Now, if we go to the folder indicated in the preceding output, we can find the
following two files:

• pm2_rsa: The first one, pm2_rsa, is your private key. As you can read from
the name, no one should have access to this key as they may steal your
identity in the servers that trust this key.

• pm2_rsa.pub: The pm2_rsa.pub is your public key. This key can be handed
over to anyone so that using asymmetric cryptography techniques, they can
verify your identity (or who you say you are).

What we are going to do now is copy the public key to the remote server so that
when our local machine PM2 tries to talk to the server, it knows who we are and let's
get into the shell without password:

cat pm2_rsa.pub | ssh youruser@yourremoteserver 'cat >> .ssh/authorized_
keys'

The last step is to register your private key as a known identity in your local machine:

ssh-add pm2_rsa

That's about it.

From now on, whenever you SSH into the remote server using as a user youruser,
you won't need to enter the password in order to get into the shell.

Once this configuration is done, there is very little to do in order to deploy any
application into this server:

pm2 deploy ecosystem.json production setup

pm2 deploy ecosystem.json production

The first command will configure everything needed to accommodate the app. The
second command will actually deploy the application itself as we configured earlier.

Chapter 8

[231]

Docker – a container for software
delivery
Virtualization has been one of the biggest trends in the past few years. Virtualization
enables the engineer to share the hardware across different software instances.
Docker is not really a virtualization software, but it is conceptually the same.

With a pure virtualization solution, a new OS runs on top of a hypervisor sitting on
top of an existing operating system (host OS). Running the full OS means that we can
be consuming a few gigabytes of hard drive in order to replicate the full stack from
the kernel to the filesystem, which usually consumes a good chunk of resources. The
structure of a virtualization solution is shown in the following image:

Layers diagram for a virtual machine environment

Deploying Microservices

[232]

With Docker, we only replicate the filesystem and binaries so that there is no need
to run the full stack of the OS where we don't need it. Docker images are usually a
few hundreds of megabytes, instead of gigabytes, and they are quite lightweight,
therefore, we can run some containers on the same machine. The previous structure
using Docker is shown as follows:

Layers diagram for Docker

With Docker, we also eliminate one of the biggest problems of software deployment,
that is, the configuration management.

We are switching a complicated per-environment configuration management, where
we need to worry about how the application is deployed/configured into a container
that is basically like a software package that can be installed in any Docker-ready
machine.

The only Docker-ready OS nowadays is Linux, as Docker needs to make use of the
advanced kernel features, forcing Windows and Mac users to run a virtual machine
with Linux in order to provide support to run Docker containers.

Chapter 8

[233]

Setting up the container
Docker comes with a very powerful and familiar way (for developers) of configuring
the containers.

You can create containers based on an existing image (there are thousands of images
on the Internet) and then modify the image to fulfil your needs by adding new
software packages or altering the filesystem.

Once we are satisfied with it, we can use the new version of the image to create our
containers using a version control system similar to Git.

However, we need to understand how Docker works first.

Installing Docker
As it was mentioned before, Docker needs a virtual machine to provide support on
Mac and Windows, therefore, the installation on these systems may vary. The best
way to install Docker on your system is to go to the official website and follow
the steps:

https://docs.docker.com/engine/installation/

At the moment, it is a very active project, so you can expect changes every few weeks.

Choosing the image
By default, Docker comes with no images. We can verify this by running docker
images on the terminal, which will produce an output very similar to the following
screenshot:

It is an empty list. There are no images stored in the local machine. The first thing
we need to do is search for an image. In this case, we are going to use CentOS as
our base for creating the images. CentOS is very close to Red Hat Enterprise Linux,
which seems to be one of the most extended distributions of Linux in the industry.
They provide great support and there is plenty of information available on the
Internet to troubleshoot problems.

https://docs.docker.com/engine/installation/

Deploying Microservices

[234]

Let's search for a CentOS image as follows:

As you can see, there is a long list of images based on CentOS, but only the first one
is official.

This list of images is coming from something called the Registry in the Docker
world. A Docker Registry is a simple repository of images available to the general
public. You can also run your own Registry in order to prevent your images from
going to the general one.

More information can be found at the following link:
https://docs.docker.com/registry/

There is one column in the table in the preceding screenshot that should have
caught your attention almost immediately, the column called STARS. This column
represents the rating given by the users for a given image. We can narrow the search
based on the number of stars that the users have given to an image by using the
-s flag.

If you run the following command, you will see a list of images rated with 1000 or
more stars:

docker search -s 1000 centos

https://docs.docker.com/registry/

Chapter 8

[235]

Be careful with the images you choose, there is nothing
preventing a user to create an image with malicious software.

In order to fetch the CentOS image to the local machine, we need to run the
following command:

docker pull centos

The output produced will be very similar to the following image:

Once the command finishes, if we run Docker images again, we can see that centos is
now appearing in the following list:

As we specified earlier, Docker does not use the full image, but it uses a reduced
version of it, only virtualizing the last few layers of the OS. You can clearly see it, as
the size of the image is not even 200 MB, which for a full version of CentOS, can go
up to a few GB.

Running the container
Now that we have a copy of the image in our local machine, it is time to run it:

docker run -i -t centos /bin/bash

Deploying Microservices

[236]

This will produce the following output:

As you can see, the prompt of the terminal has changed to something like root@
debd09c7aa3b, which means that we are inside the container.

From now on, every single command that we run will be executed inside a contained
version of CentOS Linux.

There is another interesting command in Docker:

docker ps

If we run this command in a new terminal (without exiting from the running
container), we will get the following output:

This output is self explanatory; it is an easy way to see what is going on in our
Docker containers.

Installing the required software
Let's install Node.js in the container:

curl --silent --location https://rpm.nodesource.com/setup_4.x | bash -

This command will pull and execute the setup script for Node.js.

Chapter 8

[237]

This will produce an output very similar to the following image:

Follow the instructions, as this will install node:

yum install -y nodejs

It is highly recommended to install the development tools, as the installation process
of a few modules requires a compilation step. Let's do it:

yum install -y gcc-c++ make

Once the command finishes, we are ready to run the node applications inside
our container.

Saving the changes
In the Docker world, an image is the configuration for a given container. We can use
the image as a template to run as many containers as we want, however first, we
need to save the changes made in the previous section.

If you are a software developer, you probably are familiar with control version
systems such as CVS, Subversion, or Git. Docker was built with their philosophy in
mind—a container can be treated like a versionable software component and then
changes can be committed.

Deploying Microservices

[238]

In order to do it, run the following command:

docker ps -a

This command will show a list of containers that have run in the past, as shown in
the following image:

In my case, there are few containers, but the interesting one in this case is the second;
this is where Node.js is installed.

Now, we need to commit the status of the container in order to create a new image
with our changes. We do it by running the following command:

docker commit -a dgonzalez 62e7336a4627 centos-microservices:1.0

Let's explain the command:

• The -a flag indicates the author. In this case, dgonzalez.
• The following parameter is container id. As we indicated earlier, the

second container has the corresponding ID 62e7336a4627.
• The third parameter is a combination of the name given to the new image

and the tag of the image. The tagging system can be very powerful when
we are dealing with quite a few images, as it can get really complicated to
identify small variations between them.

It might take a few seconds, but after finishing, the output of the command must be
very similar to the following image:

This is the indication that we have a new image in our list with our software
installed. Run docker images again and the output will confirm it, as shown
in the following image:

Chapter 8

[239]

In order to run a container based on the new image, we can run the following
command:

docker run -i -t centos-microservices:1.0 /bin/bash

This will give us access to the shell in the container, and we can confirm that Node.
js is installed by running node -v, which should output the version of Node, in this
case, 4.2.4.

Deploying Node.js applications
Now, it is time to deploy Node.js applications inside the container. In order to
do it, we are going to need to expose the code from our local machine to the
Docker container.

The correct way of doing it is by mounting a local folder in the Docker machine,
but first, we need to create the small application to be run inside the container,
as follows:

var express = require('express');
var myApplication = express();

app.get('/hello', function (req, res) {
 res.send('Hello Earth!');
});

var port = 80;

app.listen(port, function () {
 console.log('Listeningistening on port '+ port);
});

It is a simple application, using Express that basically renders Hello Earth! into a
browser. If we run it from a terminal and we access http://localhost:80/hello,
we can see the results.

Now, we are going to run it inside the container. In order to do it, we are going to
mount a local folder as a volume in the Docker container and run it.

Docker comes from the experience of sysadmins and developers that have lately
melted into a role called DevOps, which is somewhere in between them. Before
Docker, every single company had its own way of deploying apps and managing
configurations, so there was no consensus on how to do things the right way.

Deploying Microservices

[240]

Now with Docker, the companies have a way to provide uniformity to deployments.
No matter what your business is, everything is reduced to build the container,
deploy the application, and run the container in the appropriate machine.

Let's assume that the application is in the /apps/test/ folder. Now, in order to
expose it to the container, we run the following command:

docker run -i -t -v /app/test:/test_app -p 8000:3000 centos-
microservices:1.0 /bin/bash

As you can see, Docker can get very verbose with parameters, but let's explain them,
as follows:

• The -i and -t flags are familiar to us. They capture the input and send the
output to a terminal.

• The -v flag is new. It specifies a volume from the local machine and where to
mount it in the container. In this case, we are mounting /apps/test from the
local machine into /test_app. Please note the colon symbol to separate the
local and the remote path.

• The -p flag specifies the port on the local machine that will expose the
remote port in the container. In this case, we expose the port 3000 in the
container through the port 8000 in the Docker machine, so accessing docker-
machine:8000 from the host machine will end up accessing the port 3000 in
the container.

• The centos-microservices:1.0 is the name and tag of the image that we
have created in the preceding section.

• The /bin/bash is the command that we want to execute inside the container.
The /bin/bash is going to give us access to the prompt of the system.

If everything worked well, we should have gotten access to the system prompt inside
the container, as shown in the following image:

As you can see in the image, there is a folder called /test_app that contains our
previous application, called small-script.js.

Now, it is time to access to the app, but first, let's explain how Docker works.

Chapter 8

[241]

Docker is written in Go, which is a modern language created by Google, grouping all
the benefits from a compiled language such as C++ with all the high-level features
from a modern language such as Java.

It is fairly easy to learn and not hard to master. The philosophy of Go is to bring all
the benefits of an interpreted language, such as reducing the compilation times (the
complete language can be compiled in under a minute) to a compiled language.

Docker uses very specific features from the Linux kernel that forces Windows and
Mac users to use a virtual machine to run Docker containers. This machine used to be
called boot2docker, but the new version is called Docker Machine, which contains
more advanced features such as deploying containers in remote virtual machines.
For this example, we will only use the local capabilities.

Given that, if you run the app from within the container located in the /test_app/
folder, and you are in Linux, accessing http://localhost:8000/, it would be
enough to get into the application.

When you are using Mac or Windows, Docker is running either in the Docker
Machine or boot2docker so that the IP is given by this virtual machine, which is
shown when the Docker terminal starts, as shown in the following image:

As you can see, the IP is 192.168.99.100, so in order to access our application, we
need to visit the http://192.168.99.100:9000/ URL.

Automating Docker container creation
If you remember, in the previous chapters, one of the most important concepts was
automation. Automation is the key when working with microservices. Instead of
operating one server, you probably will need to operate few dozens, reaching a point
where you are almost fully booked on day-to-day tasks.

Deploying Microservices

[242]

Docker designers had that in mind when allowing the users to create containers from
a script written in a file called Dockerfile.

If you have ever worked on coding C or C++, even in college, you are probably
familiar with Makefiles. A Makefile file is a script where the developer specifies
the steps to automatically build a software component. Here is an example:

all: my-awesome-app

my-awesome-app: main.o external-module.o app-core.o
 g++ main.o external-module.o app-core.o -o my-awesome-app

main.o: main.cc
 g++ -c main.cc

external-module.o: external-module.cc
 g++ -c external-module.cc

app-core.o: app-core.cc
 g++ -c hello.cc

clean:
 rm *.o my-awesome-app

The preceding Makefile contains a list of tasks and dependencies to be executed. For
example, if we execute make clean on the same folder where the Makefile file is
contained, it will remove the executable and all the files ending with o.

Dockerfile, unlike Makefile, is not a list of tasks and dependencies (even though
the concept is the same), it is a list of instructions to build a container from scratch to
a ready status.

Let's see an example:

FROM centos

MAINTAINER David Gonzalez

RUN curl --silent --location https://rpm.nodesource.com/setup_4.x | bash
-

RUN yum -y install nodejs

These small few preceding lines are enough to build a container having Node.js
installed.

Chapter 8

[243]

Let's explain it in the following:

• First, we choose the base image. In this case, it is centos as we used before.
For doing this, we use the FROM command and then the name of the image.

• MAINTAINER specifies the name of the person who created the container. In
this case, it is David Gonzalez.

• RUN, as its name indicates, runs a command. In this case, we use it twice: once
to add the repository to yum, and then to install Node.js.

Dockerfiles can contain a number of different commands. The documentation for
them is pretty clear, but let's take a look at the most common (aside from the ones
seen before):

• CMD: This is similar to run, but it actually gets executed after building the
command. CMD is the command to be used to start an application once the
container is instantiated.

• WORKDIR: This is to be used in conjunction with CMD, it is the command used
to specify the work directory for the next CMD command.

• ADD: This command is used to copy files from the local filesystem to the
container instance filesystem. In the previous example, we can use ADD
to copy the application from the host machine into the container, run npm
install with the CMD command, and then run the app once again with
the CMD command. It can also be used to copy the content from a URL to a
destination folder inside the container.

• ENV: This is used to set environment variables. For example, you could
specify a folder to store files uploaded by passing an environment variable to
the container, as follows:
ENV UPLOAD_PATH=/tmp/

• EXPOSE: This is used to expose ports to the rest of the containers in your cluster.

As you can see, the domain-specific language (DSL) of Dockerfiles is quite
rich and you can pretty much build every system required. There are hundreds
of examples on the Internet to build pretty much everything: MySQL, MongoDB,
Apache servers, and so on.

It is strongly recommended to create containers through Dockerfiles, as it can
be used as a script to replicate and make changes to the containers in the future,
as well as being able to automatically deploy our software without much manual
intervention.

Deploying Microservices

[244]

Node.js event loop – easy to learn and
hard to master
We all know that Node.js is a platform that runs applications in a single-threaded
way; so, why don't we use multiple threads to run applications so that we can get
the benefit of multicore processors?

Node.js is built upon a library called libuv. This library abstracts the system calls,
providing an asynchronous interface to the program that uses it.

I come from a very heavy Java background, and there, everything is synchronous
(unless you are coding with some sort of non-blocking libraries), and if you issue a
request to the database, the thread is blocked and resumed once the database replies
with the data.

This usually works fine, but it presents an interesting problem: a blocked thread is
consuming resources that could be used to serve other requests. The event loop of
Node.js is shown in the following figure:

This is the Node.js event loop diagram

JavaScript is, by default, an event-driven language. It executes the program that
configures a list of event handlers that will react to given events, and after that,
it just waits for the action to take place.

Let's take a look at a very familiar example:

<div id="target">
 Click here
</div>
<div id="other">
 Trigger the handler
</div>

Chapter 8

[245]

Then the JavaScript code is as follows:

$("#target").click(function() {
 alert("Handler for .click() called.");
});

As you can see, this is a very simple example. HTML that shows a button and
snippet of JavaScript code that, using JQuery, shows an alert box when the
button is clicked.

This is the key: when the button is clicked.

Clicking a button is an event, and the event is processed through the event loop of
JavaScript using a handler specified in the JavaScript.

At the end of the day, we only have one thread executing the events, and we never
talk about parallelism in JavaScript, the correct word is concurrency. So, being more
concise, we can say that Node.js programs are highly concurrent.

Your application will always be executed in only one thread, and we need to keep
that in mind while coding.

If you have been working in Java or .NET or any other language/frameworks
designed and implemented with thread-blocking techniques, you might have
observed that Tomcat, when running an application, spawns a number of threads
listening to the requests.

In the Java world, each of these threads are called workers, and they are responsible
to handle the request from a given user from the beginning to the end. There is one
type of data structure in Java that takes the benefit of it. It is called ThreadLocal and
it stores the data in the local thread so that it can be recovered later on. This type of
storage is possible because the thread that starts the request is also responsible to
finish it, and if the thread is executing any blocking operation (such as reading a file
or accessing a database), it will wait until it is completed.

This is usually not a big deal, but when your software relies heavily on I/O, the
problems can become serious.

Another big point in favor of the non-blocking model of Node.js is the lack of
context switch.

Deploying Microservices

[246]

When the CPU switches one thread with another, what happens is that all the data in
the registers, and other areas of the memory, is stacked and allows the CPU to switch
the context with a new process that has its own data to be placed in there, as shown
in the following image:

This is a diagram showing context switching in threads from the theoretical point of view.

This operation takes time, and this time is not used by the application. It simply
gets lost. In Node.js, your application runs in only one thread, so there is no such
context switching while running (it is still present in the background, but hidden
to your program). In the following image, we can see what happens in the real world
when a CPU switches a thread:

This is a diagram showing context switching in threads from the
practical (shows the dead times) point of view.

Clustering Node.js applications
By now, you know how Node.js applications work, and certainly, some of the
readers may have a question that if the app runs on a single thread, then what
happens with the modern multicore processors?

Before answering this question, let's take a look at the following scenario.

When I was in high school, there was a big technology leap in CPUs: the segmentation.

Chapter 8

[247]

It was the first attempt to introduce parallelism at the instruction level. As you
probably are aware, the CPU interprets assembler instructions and each of these
instructions are composed of a number of phases, as shown in the following diagram:

Before the Intel 4x86, the CPUs were executing one instruction at the time, so taking
the instruction model from the preceding diagram, any CPU could only execute one
instruction every six CPU cycles.

Then, the segmentation came into play. With a set of intermediate registers, the CPU
engineers managed to parallelize the individual phases of instructions so that in the
best-case scenario, the CPUs are able to execute one instruction per cycle (or nearly),
as shown in the following diagram:

The image describes the execution of instructions in a CPU with a segmented pipeline

Deploying Microservices

[248]

This technical improvement led to faster CPUs and opened the door to native
hardware multithreading, which led to the modern n-core processors that can
execute a large number of parallel tasks, but when we are running Node.js
applications, we only use one core.

If we don't cluster our app, we are going to have a serious performance degradation
when compared to other platforms that take the benefit of the multiple cores of a CPU.

However, this time we are lucky, PM2 already allows you to cluster Node.js apps to
maximize the usage of your CPUs.

Also, one of the important aspects of PM2 is that it allows you to scale applications
without any downtime.

Let's run a simple app in the cluster mode:

var http = require("http");
http.createServer(function (request, response) {
 response.writeHead(200, {
 'Content-Type': 'text/plain'
 });
 response.write('Here we are!')
 response.end();
}).listen(3000);

This time we have used the native HTTP library for Node.js in order to handle the
incoming HTTP requests.

Now we can run the application from the terminal and see how it works:

node app.js

Chapter 8

[249]

Although it does not output anything, we can curl to the http://localhost:3000/
URL in order to see how the server responds, as shown in the following screenshot:

As you can see, Node.js has managed all the HTTP negotiation and it has also
managed to reply with the Here we are! phrase as it was specified in the code.

This service is quite trivial, but it is the principle on which more complex web
services work, so we need to cluster the web service to avoid bottlenecks.

Node.js has one library called cluster that allows us to programmatically cluster
our application, as follows:

var cluster = require('cluster');
var http = require('http');
var cpus = require('os').cpus().length;

// Here we verify if the we are the master of the cluster: This is
 the root process
// and needs to fork al the childs that will be executing the web
 server.
if (cluster.isMaster) {
 for (var i = 0; i < cpus; i++) {
 cluster.fork();

Deploying Microservices

[250]

 }

 cluster.on('exit', function (worker, code, signal) {
 console.log("Worker " + worker.proces.pid + " has finished.");
 });
} else {
 // Here we are on the child process. They will be executing the
 web server.
 http.createServer(function (request, response) {
 response.writeHead(200);
 response.end('Here we are!d\n');
 }).listen(80);
}

Personally, I find it much easier to use specific software such as PM2 to accomplish
effective clustering, as the code can get really complicated while trying to handle the
clustered instances of our app.

Given this, we can run the application through PM2 as follows:

pm2 start app.js -i 1

The -i flag in PM2, as you can see in the output of the command, is used to specify
the number of cores that we want to use for our application.

If we run pstree, we can see the process tree in our system and check whether PM2
is running only one process for our app, as shown in the following image:

Chapter 8

[251]

In this case, we are running the app in only one process, so it will be allocated in one
core of the CPU.

In this case, we are not taking advantage of the multicore capabilities of the CPU that
is running the app, but we still get the benefit of restarting the app automatically if
one exception bubbles up from our algorithm.

Now, we are going to run our application using all the cores available in our CPU so
that we maximize the usage of it, but first, we need to stop the cluster:

pm2 stop all

PM2, after stopping all the services

pm2 delete all

Now, we are in a position to rerun the application using all the cores of our CPU:

pm2 start app.js -i 0

PM2 showing four services running in a cluster mode

Deploying Microservices

[252]

PM2 has managed to guess the number of CPUs in our computer, in my case, this is
an iMac with four cores, as shown in the following screenshot:

As you can see in pstree, PM2 started four threads at the OS level, as shown in the
following image:

Chapter 8

[253]

When clustering an application, there is an unwritten rule about the number of
cores that an application should be using and this number is the number of cores
minus one.

The reason behind this number is the fact that the OS needs some CPU power so that
if we use all the CPUs in our application, once the OS starts carrying on with some
other tasks, it will force context switching as all the cores will be busy and this will
slow down the application.

Load balancing our application
Sometimes, clustering our app is not enough and we need to scale our application
horizontally.

There are a number of ways to horizontally scale an app. Nowadays, with cloud
providers such as Amazon, every single provider has implemented their own
solution with a number of features.

One of my preferred ways of implementing the load balancing is using NGINX.

NGINX is a web server with a strong focus on the concurrency and low memory
usage. It is also the perfect fit for Node.js applications as it is highly discouraged to
serve static resources from within a Node.js application. The main reason is to avoid
the application from being under stress due to a task that could be done better with
another software, such as NGINX (which is another example of specialization).

Deploying Microservices

[254]

However, let's focus on load balancing. The following figure shows how NGINX
works as a load balancer:

As you can see in the preceding diagram, we have two PM2 clusters load balanced
by an instance of NGINX.

The first thing we need to do is know how NGINX manages the configuration.

On Linux, NGINX can be installed via yum, apt-get, or any other package manager.
It can also be built from the source, but the recommended method, unless you have
very specific requirements, is to use a package manager.

Chapter 8

[255]

By default, the main configuration file is /etc/nginx/nginx.conf, as follows:

user nginx;
worker_processes 1;

error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;

events {
 worker_connections 1024;
}

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 log_format main '$remote_addr - $remote_user [$time_local]
 "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for" '
 '$request_time';

 access_log /var/log/nginx/access.log main;
 server_tokens off;
 sendfile on;
 #tcp_nopush on;
 keepalive_timeout 65s;
 send_timeout 15s;
 client_header_timeout 15s;
 client_body_timeout 15s;
 client_max_body_size 5m;
 ignore_invalid_headers on;
 fastcgi_buffers 16 4k;
 #gzip on;
 include /etc/nginx/sites-enabled/*.conf;
}

This file is pretty straightforward, it specifies the number of workers (remember,
processes to serve requests), the location of error logs, number connections that a
worker can have active at the time, and finally, the HTTP configuration.

The last line is the most interesting one: we are informing NGINX to use
/etc/nginx/sites-enabled/*.conf as potential configuration files.

Deploying Microservices

[256]

With this configuration, every file ending in .conf under the specified folder is going
to be part of the NGINX configuration.

As you can see, there is a default file already existing there. Modify it to look
as follows:

http {
 upstream app {
 server 10.0.0.1:3000;
 server 10.0.0.2:3000;
 }
 server {
 listen 80;
 location / {
 proxy_pass http://app;
 }
 }
}

This is all the configuration we need to build a load balancer. Let's explain it
in the following:

• The upstream app directive is creating a group of services called app. Inside
this directive, we specify two servers as we've seen in the previous image.

• The server directive specifies to NGINX that it should be listening to all the
requests from port 80 and passing them to the group of upstream called app.

Now, how does NGINX decide to send the request to which computer?

In this case, we could specify the strategy used to spread the load.

By default, NGINX, when there is not a balancing method specifically configured,
uses Round Robin.

One thing to bear in mind is that if we use round robin, our application should be
stateless as we won't be always hitting the same machine, so if we save the status in
the server, it might not be there in the following call.

Round Robin is the most elementary way of distributing load from a queue of
work into a number of workers; it rotates them so that every node gets the same

amount of requests.

Chapter 8

[257]

There are other mechanisms to spread the load, as follows:

 upstream app {
 least_conn;
 server 10.0.0.1:3000;
 server 10.0.0.2:3000;
 }

Least connected, as its name indicates, sends the request to the least connected node,
equally distributing the load between all the nodes:

 upstream app {
 ip_hash;
 server 10.0.0.1:3000;
 server 10.0.0.2:3000;
 }

IP hashing is an interesting way of distributing the load. If you have ever worked
with any web application, the concept of sessions is something present in almost
any application. In order to remember who the user is, the browser sends a cookie
to the server, which has stored who the user is in memory and what data he/she
needs/can be accessed by that given user. The problem with the other type of load
balancing is that we are not guaranteed to always hit the same server.

For example, if we are using Least connected as a policy for balancing, we could
hit the server one in the first load, but then hit a different server on subsequent
redirections that will result in the user not being displayed with the right information
as the second server won't know who the user is.

With IP hashing, the load balancer will calculate a hash for a given IP. This hash will
somehow result in a number from 1 to N, where N is the number of servers, and
then, the user will always be redirected to the same machine as long as they keep the
same IP.

We can also apply a weight to the load balancing, as follows:

 upstream app {
 server 10.0.0.1:3000 weight=5;
 server 10.0.0.2:3000;
 }

This will distribute the load in such way that, for every six requests, five will be
directed to the first machine and one will be directed to the second machine.

Deploying Microservices

[258]

Once we have chosen our preferred load balancing method, we can restart NGINX
for the changes to take effect, but first, we want to validate them as shown in the
following image:

As you can see, the configuration test can be really helpful in order to avoid
configuration disasters.

Once NGINX has passed configtest, it is guaranteed that NGINX will be able to
restart/start/reload without any syntax problem, as follows:

sudo /etc/init.d/nginx reload

Reload will gracefully wait until the old threads are done, and then, reload the
configuration and route the new requests with the new configuration.

If you are interested in learning about NGINX, I found the following official
documentation of NGINX quite helpful:

http://nginx.org/en/docs/

Health check on NGINX
Health checking is one of the important activities on a load balancer. What happens
if one of the nodes suffers a critical hardware failure and is unable to serve more
requests?

In this case, NGINX comes with two types of health checks: passive and active.

Passive health check
Here, NGINX is configured as a reverse proxy (as we did in the preceding section).
It reacts to a certain type of response from the upstream servers.

If there is an error coming back, NGINX will mark the node as faulty, removing it
from the load balancing for a certain period of time before reintroducing it. With
this strategy, the number of failures will be drastically reduced as NGINX will be
constantly removing the node from the load balancer.

Chapter 8

[259]

There are a few configurable parameters, such as max_fails or fail_timeout,
where we can configure the amount of failures required to mark a node as invalid
or the time out for requests.

Active health check
Active health checks, unlike passive health checks, actively issue connections
to the upstream servers to check whether they are responding correctly to the
experiencing problems.

The most simplistic configuration for active health checks in NGINX is the
following one:

http {
 upstream app {
 zone app test;
 server 10.0.0.1:3000;
 server 10.0.0.2:3000;
 }
 server {
 listen 80;
 location / {
 proxy_pass http://app;
 health_check;
 }
 }
}

There are two new lines in this config file, as follows:

• health_check: This enables the active health check. The default configuration
is to issue a connection every five seconds to the host and port specified in the
upstream section.

• zone app test: This is required by the NGINX configuration when enabling
the health check.

There is a wide range of options to configure more specific health checks, and all of
them are available in NGINX configuration that can be combined to satisfy the needs
of different users.

Deploying Microservices

[260]

Summary
In this chapter, you learned a wide range of technologies that we can use to deploy
microservices. By now you know how to build, deploy, and configure software
components in such a way that we are able to homogenize a very diverse range of
technologies. The objective of this book is to provide you the concepts required to
start working with microservices and enable the reader to know how to look for the
needed information.

Personally, I have struggled to find a book that provides a summary of all the
aspects of the life cycle of microservices and I really hope that this book covers
this empty space.

[261]

Index
Symbols
10-18 Monkey agent 220

A
ACID

atomicity 10
consistency 10
durability 10
isolation 10

active health check 259
active monitoring 218
ADD command 243
API aggregation 21
application exceptions

monitoring, Keymetrics used 212-214
application metrics 202
application security 131-135
asymmetric cryptography 134
Asynchronous JavaScript and

XML (AJAX) 22
auditing 131, 148, 149
automated testing

about 156
end-to-end tests 157
integration tests 156
need for 158, 159
unit tests 156

average calculated values metric 216, 217

B
behavior-driven development (BDD) 157
behavior-driven development testing

(BDDT) 165

black listing 138
bluebird

about 51
URL 117, 125

boot2docker 241
bounded context 17
Business Process Execution Language

(BPEL) 8
business units 5-7

C
callback 30
calling services

New Business 62
Renewals 62

Chai
about 160, 161
assertions interface 164, 165
BDD-style interfaces 161-164

Chaos Gorilla 220
Chaos Monkey 220
Chef

URL 27
circuit breakers

URL 119
CMD command 243
code reviews

effective ways 144, 145
communications service 66
configuration management 232
container

creation, automating 241-243
executing 235, 236
setting up 233

continuous delivery (CD) 226

[262]

continuous integration (CI) 226
Conway's Law 62
cost of change curve 226
counter metric 215, 216
Cross-site request forgery (CSRF) 141, 142
cross-site scripting

about 139-141
output encoding 141

CRUD (Create Read Update Delete) 15
cryptography algorithm 134
curl 208
custom metrics

about 214
average calculated values metric 216, 217
counter metric 215, 216
simple metric 214, 215

D
data access object (DAO) pattern 31
debugging 126-129
decentralization 9-11
definition function 45
deliver early

about 60
reference link 60

deliver often
about 60
reference link 60

Docker
about 226, 231, 232
container creation, automating 241-243
container, executing 235, 236
container, setting up 233
image, selecting 233-235
installing 233
modifications, saving 237-239
Node.js applications, deploying 239-241
Node.js, installing 236, 237
URL 233

Docker Machine 241
Doctor Monkey 220
Document Object Model (DOM) 32
domain-specific language (DSL) 165, 243

E
ECMAScript 6 22

e-mailer
about 90
e-mails, sending 91
fallback strategy 99, 101
interface, defining 91, 92
Mandrill, integrating in microservice 94-98
Mandrill, setting up 92-94

emailer 78, 79
end-to-end testing 157, 180-183
Enterprise Service Bus (ESB) 20
ENV command 243
European Computer Manufacturers

Association (ECMA) 22
event loop, Node.js 244-246
exceptions 51, 52
EXPOSE command 243
Express

about 26, 47
integrating with 89, 90

F
forever task runner 26, 51
functional testing

about 154, 155
automated testing 156

H
hardware resource metrics

CPU utilization 201
disk utilization 201
memory metrics 201

health check
about 258
active health check 259
passive health check 258

Hello World program 29-31
highly cohesive business unit 6
HTTP codes

1xx - informational 150
2xx - success codes 150
3xx - redirection 150, 151
4xx - client errors 151
5xx - server errors 151
about 149
in microservices, importance 152

Hyper Text Transfer Protocol (HTTP) 8

[263]

I
independence 18
infrastructure logical security 131, 132
injection

about 136-138
input validation 138

input validation 138, 139
integration tests 156
IP hashing 257

J
Java Remote Method Invocation (RMI) 12
JavaScript 32, 33
JavaScript Object Notation (JSON) 80
JSON 192

K
key benefits

easy to deploy 18
independence 18
replaceability 17
resilience 13
scalability 14, 15
technology heterogeneity 15, 16

key design principles
about 4
business units 5-7
decentralization 9-11
small size 12
smart services 8, 9
technology alignment 12

Keymetrics
about 202
custom metrics 214
URL 202, 206
used, for diagnosing problems 207-212
used, for monitoring application

exceptions 212-214
used, for monitoring services 202-206

L
latency 221
Latency Monkey 220
least connected node 257

libuv library 244
load balancing

of Node.js applications 253-258
logging 145-147
logging, levels

DEBUG 149
ERROR 149
FATAL 149
INFO 149
WAR 149

loosely coupled business unit 6

M
Mandrill

integrating, in microservice 94-97
setting up 92-94
URL 92-96

manual testing
about 184
Postman 185-189
proxy, building to debug microservices 184

memory leak 207
micromerce

about 77
deploying, PM2 used 229

microservices
APIs, documenting with Swagger 189-197
disadvantages 71
documenting 189
evolution 64-70
in real world 2, 3
monolith, splitting 71, 72
need for 1
project, generating from Swagger

definition 197-199
small size microservices 12
testing 173, 174
testing, in Node.js 160
versus Service-Oriented Architectures

(SOA) 19, 20
microservices-oriented architectures

about 3
benefits 3
shortcomings 3, 4

Mocha 160, 165

[264]

MongoDB
URL 80

mongo-store
URL 88

monolith
about 60
abstraction capacity 63, 64
organic growth, tackling 60-63
problems, in splitting 72, 73
software 2
splitting 71, 72

N
Netflix 3
network latency 4
NGINX

about 253
health check 258
URL 258
using 253-258

Node.js
about 1
application, clustering 246-253
application, deploying 239, 240
API aggregation 21
assertions interface 164, 165
BDD-style interfaces 161-164
Chai 160, 161
event loop 244-246
future 22
installing 26, 236, 237
JavaScript 32, 33
load balancing 253-258
microservices, testing 160
Mocha 165-168
modular organization, best practices 31, 32
need for 20-26
real microservice, testing 173, 174
Sinon 169-173
SOLID 33-36
Test-driven development (TDD) 174-176
threading model 31
URL 27

nodemon 26, 52
Node Package Manager (npm)

about 21, 26

installing 26
learning 27-29

non-persistent XSS attacks 140
NServiceBus

URL 121

O
Object-relational mapping (ORM) 49, 50
open redirects 143
Open Web Application

Security (OWASP) 136
order manager

about 78, 79, 101
code 105
microservice, defining 101-105
remote services, calling 105-107
resilience, over perfection 107, 108

organic growth
about 1, 60
tackling 60-63

organizational alignment 73, 74

P
passive health check 258
Patrun

about 39-42
patterns, reusing 42, 43
Pclosest match 41

persistent XSS attacks 140
PM2

about 25, 51, 202
ecosystems 227, 228
installing 26
server, configuring 229, 230
single-threaded applications and

exceptions 51, 52
used, for deploying micromerce 229
used, for monitoring services 202-206
used, for software deployment 227
using 53-57

pmx 212
polymorphism of actions 99
Postman 185-189
PRG pattern

URL 109

[265]

probes 214
Product Manager

about 78-80
Express, integrating with 89, 90
fetching, by category 82
fetching, by ID 82
product, adding 83
product, editing 84
product, removing 84
products, fetching 81
REST API, creating 89
wiring 85-88

pyramid of testing 158

Q
queueing 223

R
RabbitMQ

about 222
URL 121

Registry
about 234
URL 234

replaceability
about 17
importance 18

resilience 13
restify 26
Round Robin 256
RSA 134
run command, parameters

/bin/bash command 240
-i flag 240
-p flag 240
-t flag 240
-v flag 240

S
scalability 14, 15
Secure Shell (SSH) 132-135
security

about 131
infrastructure logical security 131, 132

Seneca
about 21, 25, 36, 37, 38, 39, 64, 120, 121
and promises 122-125
as Express middleware 47-49
data storage 49-51
installing 26
Inversion of control 39
pattern matching 40, 41
plugins, writing 43-46
web server integration 47

seneca-web 47
Service-Oriented Architecture (SOA)

about 1, 19
versus microservices 19, 20

services
monitoring 201, 202
monitoring, Keymetrics used 202-206
monitoring, PM2 used 202-206

Simian Army
about 218-221
performance degradation 221-223
throughput 221-223
URL 221

simple metric 214, 215
Single Euro Payments Area (SEPA) 12
Single-Page Application (SPA) 20, 77
single point of failure 219
single-threaded applications 51
Sinon 169-172
Sinon.JS 160
Slack 214
smart services 8, 9
SOAP 18
Software as a service (SaaS) 202
software deployment

concepts 225, 226
continuous delivery (CD) 226
continuous integration (CI) 226
with PM2 227

Software Development Life
Cycle (SDLC) 225

SOLID
about 33
principles 35

SOLID design principles
dependency injection 67
interface segregation 67

[266]

Liskov substitution 67
open for extension, closed for

modification 67
single-responsibility principle 67

Spotify 3, 218
STARS 234
Stubs 170
Swagger

APIs, documenting with 189-197

T
technical debt 18
technology alignment 12
technology heterogeneity 12-16
Test-driven development

(TDD) 155, 174, 176
ThreadLocal 245
traceability

about 131, 145
auditing 148, 149
HTTP codes 149
logging 145-147
tracing requests 147, 148

U
UI - API aggregation

about 78, 79, 108, 109
circuit breakers 118, 119
code 109-117
frontend microservice, need for 109
Seneca, and promises 122-125
Seneca puzzle 120, 121
service degradation 117

unit testing 156, 176-180

V
Vagrant

URL 132

W
white box testing 156
white list 138
WORKDIR command 243
workers 245

X
XSS. See cross-site scripting
XSS attacks

non-persistent 140
persistent 140

Y
Yet Another Markup Language (YAML) 192

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Microservices Architecture
	Need for microservices
	Monolithic software
	Microservices in the real world
	Microservice-oriented architectures
	How is it better?
	Shortcomings

	Key design principles
	Business units, no components
	Smart services, dumb communication pipes
	Decentralization
	Technology alignment
	How small is too small?

	Key benefits
	Resilience
	Scalability
	Technology heterogeneity
	Replaceability
	Independence
	Why is replaceability important?
	Easy to deploy

	SOA versus microservices
	Why Node.js?
	API aggregation
	The future of Node.js

	Summary

	Chapter 2: Microservices in
Node.js – Seneca and
PM2 Alternatives
	Need for Node.js
	Installing Node.js, npm, Seneca, and PM2
	Learning npm

	Our first program – Hello World
	Node.js threading model
	Modular organization best practices
	Javascript
	SOLID design principles

	Seneca – a microservices framework
	Inversion of control done right
	Pattern matching in Seneca
	Patrun – a pattern-matching library
	Reusing patterns
	Writing plugins
	Web server integration

	PM2 – a task runner for Node.js
	Single-threaded applications and exceptions
	Using PM2 – the industry-standard task runner

	Summary

	Chapter 3: From the Monolith to Microservices
	First, there was the monolith
	How to tackle organic growth?
	How abstract is too abstract?

	Then the microservices appeared
	Disadvantages
	Splitting the monolith
	Problems splitting the monolith – it is all about the data

	Organizational alignment
	Summary

	Chapter 4: Writing Your First Microservice in Node.js
	Micromerce – the big picture
	Product Manager – the two-faced core
	Fetching products
	Fetching by category
	Fetching by ID
	Adding a product
	Removing a product
	Editing a product
	Wiring everything up
	Integrating with Express – how to create a REST API

	The e-mailer – a common problem
	How to send e-mails
	Defining the interface
	Setting up Mandrill
	Hands on – integrating Mandrill in your microservice
	The fallback strategy

	The order manager
	Defining the microservice – how to gather non-local data
	The order manager – the code
	Calling remote services
	Resilience over perfection

	The UI – API aggregation
	Need for frontend microservice
	The code
	Service degradation – when the failure is not a disaster
	Circuit breakers
	Seneca – a simple puzzle that makes our lives easier
	Seneca and promises

	Debugging
	Summary

	Chapter 5: Security and Traceability
	Infrastructure logical security
	SSH – encrypting the communications

	Application security
	Common threats – how to be up to date
	Injection
	Cross-site scripting
	Cross-site request forgery
	Open redirects

	Effective code reviews

	Traceability
	Logging
	Tracing requests
	Auditing
	HTTP codes
	1xx – informational
	2xx – success codes
	3xx – redirection
	4xx – client errors
	5xx – server errors
	Why HTTP codes matter in microservices

	Summary

	Chapter 6: Testing and Documenting Node.js Microservices
	Functional testing
	The pyramid of automated testing
	Unit tests
	Integration tests
	End-to-end tests
	How much testing is too much?

	Testing microservices in Node.js
	Chai
	Mocha
	Sinon.JS – a mocking framework
	Testing a real microservice
	Manual testing – the necessary evil

	Documenting microservices
	Documenting APIs with Swagger
	Generating a project from the Swagger definition

	Summary

	Chapter 7: Monitoring Microservices
	Monitoring services
	Monitoring using PM2 and Keymetrics
	Diagnosing problems
	Monitoring application exceptions
	Custom metrics

	Simian Army – the active monitoring from Spotify
	Throughput and performance degradation

	Summary

	Chapter 8: Deploying Microservices
	Concepts in software deployment
	Continuous integration
	Continuous delivery

	Deployments with PM2
	PM2 – ecosystems
	Deploying microservices with PM2
	Configuring the server

	Docker – a container for software delivery
	Setting up the container
	Installing Docker
	Choosing the image
	Running the container
	Installing the required software
	Saving the changes

	Deploying Node.js applications
	Automating Docker container creation

	Node.js event loop – easy to learn and hard to master
	Clustering Node.js applications
	Load balancing our application
	Health check on NGINX
	Passive health check
	Active health check

	Summary

	Index

