
Solving the “false positives” problem in fraud prediction
Automated Data Science at an Industrial Scale

Roy Wedge and James Max Kanter and Kalyan Veeramachaneni
Data to AI Lab,

LIDS, MIT,
Cambridge, MA-02139

Santiago Moral Rubio and Sergio Iglesias Perez†

Banco Bilbao Vizcaya Argentaria (BBVA)
Madrid, Spain

Abstract
In this paper, we present an automated feature engineer-
ing based approach to dramatically reduce false pos-
itives in fraud prediction. False positives plague the
fraud prediction industry. It is estimated that only 1 in 5
declared as fraud are actually fraud and roughly 1 in ev-
ery 6 customers have had a valid transaction declined in
the past year. To address this problem, we use the Deep
Feature Synthesis algorithm to automatically derive be-
havioral features based on the historical data of the card
associated with a transaction. We generate 237 features
(>100 behavioral patterns) for each transaction, and use
a random forest to learn a classifier. We tested our ma-
chine learning model on data from a large multinational
bank and compared it to their existing solution. On an
unseen data of 1.852 million transactions, we were able
to reduce the false positives by 54% and provide a sav-
ings of 190K euros. We also assess how to deploy this
solution, and whether it necessitates streaming compu-
tation for real time scoring. We found that our solution
can maintain similar benefits even when historical fea-
tures are computed once every 7 days.

1. Introduction
Digital payment systems are enjoying growing popular-
ity, and the companies that run them now have the abil-
ity to store, as data, every interaction a customer has
with a payment system. Combined, these two devel-
opments have led to a massive increase in the amount
of available transaction data, and have made service

†Authors are the founding members of the Computer Sci-
ence and Artificial Intelligence Laboratory (CSAIL), MIT’s
Cybsersecurity initiative.

providers better equipped than ever to handle the prob-
lem of fraud detection.

Fraud detection problems are well-defined super-
vised learning problems, and data scientists have long
been applying machine learning to help solve them
Brause, Langsdorf, and Hepp (1999); Ghosh and Reilly
(1994). However, false positives still plague the indus-
try (Pascual and Van Dyke, 2015). It is not uncommon
to have false positive rates as high as 10-15% and have
only 1 in 5 transactions declared as fraud be truly fraud
(Pascual and Van Dyke, 2015). These high rates present
significant financial ramifications: many analysts have
pointed out that false positives may be costing mer-
chants more then fraud itself 1.

To mitigate this, most enterprises have adopted a
multi-step process that combines work by human ana-
lysts and machine learning models. This process usu-
ally starts with a machine learning model generating
a risk score and combining it with expert-driven rules
to sift out potentially fraudulent transactions. The re-
sulting alerts pop up in a 24/7 monitoring center, where
they are examined and diagnosed by human analysts, as
shown in Figure 1. This process can potentially reduce
the false positive rate by 5% – but this improvement
comes only with high (and very costly) levels of human
involvement. Even with such systems in place, a large
number of false positives remain.

In this paper, we present an improved machine learn-
ing solution to drastically reduce the “false positives”
in the fraud prediction industry. Such a solution will
not only have financial implications, but also reduce the
alerts at the 24/7 control center, enabling security an-

1https://blog.riskified.com/true-cost-declined-orders/

ar
X

iv
:1

71
0.

07
70

9v
1

 [
cs

.A
I]

 2
0

O
ct

 2
01

7

alysts to use their time more effectively, and thus de-
livering the true promise of machine learning/artificial
intelligence technologies.

We received a large, multi-year dataset from BBVA,
containing 900 million transactions. We were also given
fraud reports that identified a very small subset of trans-
actions as fraudulent. Our task was to develop a ma-
chine learning solution that: (a) uses this rich transac-
tional data in a transparent manner (no black box ap-
proaches), (b) competes with the solution currently in
use by BBVA, and (c) is deployable, keeping in mind
the real-time requirements placed on the prediction sys-
tem.

We would be remiss not to acknowledge the numer-
ous machine learning solutions achieved by researchers
and industry alike (more on this in Section 3.). However,
the value of extracting patterns from historical data has
been only recently recognized as an important factor in
developing these solutions – instead, the focus has gen-
erally been on finding the best possible model given a
set of features, and even after this , few studies focused
on extracting a handful of features. Recognizing the im-
portance of feature engineering Domingos (2012) – in
this paper, we use an automated feature engineering ap-
proach to generate hundreds of features to exploit these
large caches of data and dramatically reduce the false
positives.

2. Key findings and results
Key to success is automated feature engineering:
Having access to rich information about cards and cus-
tomers exponentially increases the number of possible
features we can generate. However, coming up with
ideas, manually writing software and extracting features
can be time-consuming, and may require customization
each time a new bank dataset is encountered. In this
paper, we use an automated method called deep feature
synthesis(DFS) to rapidly generate a rich set of features
that represent the patterns of use for a particular accoun-
t/card. Examples of features generated by this approach
are presented in Table 4.

As per our assessment, because we were able to per-
form feature engineering automatically via Featuretools
and machine learning tools, we were able to focus our
efforts and time on understanding the domain, evaluat-
ing the machine learning solution for financial metrics
(>60% of our time), and communicating our results.
We imagine tools like these will also enable others to
focus on the real problems at hand, rather than becom-

ing caught up in the mechanics of generating a machine
learning solution.
Deep feature synthesis obviates the need for stream-
ing computing: While the deep feature synthesis al-
gorithm can generate rich and complex features using
historical information, and these features achieve supe-
rior accuracy when put through machine learning, it still
needs to be able to do this in real time in order to feed
them to the model. In the commercial space, this has
prompted the development of streaming computing so-
lutions.

But, what if we could compute these features only
once every t days instead? During the training phase,
the abstractions in deep feature synthesis allow features
to be computed with such a “delay,” and for their
accuracy to be tested, all by setting a single parameter.
For example, for a transaction that happened on August
24th, we could use features that had been generated on
August 10th. If accuracy is maintained, the implication
is that aggregate features need to be only computed
once every few days, obviating the need for streaming
computing.

What did we achieve?
DFS achieves a 91.4% increase in precision com-

pared to BBVA’s current solution. This comes out to
a reduction of 155,870 false positives in our dataset – a
54% reduction.

The DFS-based solution saves 190K euros over
1.852 million transactions - a tiny fraction of the to-
tal transactional volume. These savings are over 1.852
million transactions, only a tiny fraction of BBVA’s
yearly total, meaning that the true annual savings will
be much larger.

We can compute features, once every 35 days and
still generate value Even when DFS features are only
calculated once every 35 days, we are still able to
achieve an improvement of 91.4% in precision. How-
ever, we do lose 67K euros due to approximation, thus
only saving 123K total euros. This unique capability
makes DFS is a practically viable solution.

3. Related work
Fraud detection systems have existed since the late
1990s. Initially, a limited ability to capture, store
and process data meant that these systems almost al-
ways relied on expert-driven rules. These rules gener-
ally checked for some basic attributes pertaining to the

Information type Attribute recorded
Verification results

Card captures information about unique situations during card verification.
Terminal captures information about unique situations during verification at a terminal.

About the location
Terminal can print/display messages

can change data on the card
maximum pin length it can accept
serviced or not
how data is input into the terminal

Authentication device type
mode

About the merchant unique id
bank of the merchant
type of merchant
country

About the card authorizer
About the transaction amount

timestamp
currency
presence of a customer

Table 1: A transaction, represented by a number of attributes that detail every aspect of it. In this table, we are showing
only a fraction of what is being recorded in addition to the amount, timestamp and currency for a transaction.
These range from whether the customer was present physically for the transaction to whether the terminal where the
transaction happened was serviced recently or not. We categorize the available information into several categories.

transaction – for example, “Is the transaction amount
greater then a threshold?” or “Is the transaction hap-
pening in a different country?” They were used to block
transactions, and to seek confirmations from customers
as to whether or not their accounts were being used cor-
rectly.

Next, machine learning systems were developed to
enhance the accuracy of these systems Brause, Langs-
dorf, and Hepp (1999); Ghosh and Reilly (1994). Most
of the work done in this area emphasized the modeling
aspect of the data science endeavor – that is, learning a
classifier. For example, Chan et al. (1999); Stolfo et al.
(1997) present multiple classifiers and their accuracy.
Citing the non-disclosure agreement, they do not reveal
the fields in the data or the features they created. Addi-
tionally, Chan et al. (1999) present a solution using only
transactional features, as information about their data is
unavailable.

Starting with Shen, Tong, and Deng (2007), re-
searchers have started to create small sets of hand-
crafted features, aggregating historical transactional in-

formation Bhattacharyya et al. (2011); Panigrahi et al.
(2009). Whitrow et al. (2009) emphasize the impor-
tance of aggregate features in improving accuracy. In
most of these studies, aggregate features are gener-
ated by aggregating transactional information from the
immediate past of the transaction under consideration.
These are features like “number of transactions that
happened on the same day”, or “amount of time elapsed
since the last transaction”.

Fraud detection systems require instantaneous re-
sponses in order to be effective. This places limits
on real-time computation, as well as on the amount
of data that can be processed. To enable predictions
within these limitations, the aggregate features used
in these systems necessitate a streaming computational
paradigm in production 2, 3 Carcillo et al. (2017). As we
will show in this paper, however, aggregate summaries

2https://mapr.com/blog/real-time-credit-card-fraud-
detection-apache-spark-and-event-streaming/

3https://www.research.ibm.com/foiling-financial-
fraud.shtml

Item Number
Cards 7,114,018
Transaction log entries 903,696,131
Total fraud reports 172,410
Fraudulent use of card number reports 122,913
Fraudulent card reports matched to transaction 111,897

Table 2: Overview of the data we use in this paper

of transactions that are as old as 35 days can provide
similar precision to those generated from the most re-
cent transactions, up to the night before. This poses an
important question: When is streaming computing nec-
essary for predictive systems? Could a comprehensive,
automatic feature engineering method answer this ques-
tion?

4. Dataset
Looking at a set of multiyear transactional data pro-
vided to us – a snapshot of which is shown in Table 1 –
a few characteristics stand out:

• Rich, extremely granular information: Logs now
contain not only information about a transaction’s
amount, type, time stamp and location, but also tan-
gentially related material, such as the attributes of the
terminal used to make the transaction. In addition,
each of these attributes is divided into various sub-
categories that also give detailed information. Take,
for example, the attribute that tells “whether a termi-
nal can print/display messages”. Instead of a binary
“yes” or “no,” this attribute is further divided into
multiple subcategories: “can print”, “can print and
display”, “can display”, “cannot print or display”,
and “unknown”. It takes a 59-page dictionary to de-
scribe each transaction attribute and all of its possible
values.

• Historical information about card use: Detailed,
transaction-level information for each card and/or ac-
count is captured and stored at a central location,
starting the moment the account is activated and stop-
ping only when it is closed. This adds up quickly:
for example, the dataset we received, which spanned
roughly three years, contained 900 million transac-
tions. Transactions from multiple cards or accounts
belonging to the same user are now linked, provid-
ing a full profile of each customer’s financial transac-
tions.

5. Data preparation
Table 2 presents an overview of the data we used in
this paper – a total of 900 million transactions that
took place over a period of 3 years. A typical trans-
actional dataset is organized into a three-level hierar-
chy: Customers ← Cards ← Transactions. That
is, a transaction belongs to a card, which belongs to a
customer. Conversely, a card may have several trans-
actions, and a customer may have multiple cards. This
relational structure plays an important role in identify-
ing subsamples and developing features.

Before developing predictive models from the data,
we took several preparative steps typical to any data-
driven endeavor. Below, we present two data prepara-
tion challenges that we expect to be present across in-
dustry.
Identifying a data subsample: Out of the 900 million
transactions in the dataset, only 122,000 were fraudu-
lent. Thus, this data presents a challenge that is very
common in fraud detection problems – less then 0.002%
of the transactions are fraudulent. To identify patterns
pertaining to fraudulent transactions, we have to iden-
tify a subsample. Since we have only few examples of
fraud, each transaction is an important training exam-
ple, and so we choose to keep every transaction that is
annotated as fraud.

However, our training set must also include a reason-
able representation of the non-fraudulent transactions.
We could begin by sampling randomly – but the types
of features we are attempting to extract also require his-
torical information about the card and the customer to
which a given transaction belongs. To enable the trans-
fer of this information, we have to sample in the follow-
ing manner:

1. Identify the cards associated with the fraudulent
transactions,

– Extract all transactions from these cards,

2. Randomly sample a set of cards that had no fraudu-

Figure 1: This graphic depicts the process of detecting and blocking fraudulent transactions in contemporary systems.

lent transactions and,

– Extract all transactions from these cards.

Table 3 presents the sampled subset. We formed a
training subset that has roughly 9.5 million transactions,
out of which only 111,897 are fraudulent. These trans-
actions give a complete view of roughly 72K cards.
Labeling transactions: Fraud reports were collected
from over one hundred daily logs. These logs did not
include a transactionID that would directly link them
to transactions in the transaction log file, so we had to
link them ourselves. Using the

– card number,
– date of operation, and
– transaction amount

for each transaction listed in the fraud report, we at-
tempted to match it to an entry in the transaction log
file, comparing these numbers to

– transaction amount,
– date and time of operation,
– original date and time, and
– currency used in every transaction
made by that card.

We formulated a set of rules that allowed us to pin-
point the IDs for fraudulent transactions. A total of
172,410 transactions were reported as fraud out of
which 122,913 were fraudulent use of the card number.
Out of these, with our matching rules, we were able to
link a total of 111,897 transactions.

6. Automated feature generation
Given the numerous attributes collected during every
transaction, we can generate hypotheses/features in two
ways:

– By using only transaction information: Each
recorded transaction has a number of attributes that
describe it, and we can extract multiple features from

this information alone. Most features are binary,
and can be thought of as answers to yes-or-no ques-
tions, along the lines of “Was the customer physically
present at the time of transaction?”. These features
are generated by converting categorical variables us-
ing one-hot-encoding. Additionally, all the nu-
meric attributes of the transaction are taken as-is.

– By aggregating historical information: Any given
transaction is associated with a card, and we have ac-
cess to all the historical transactions associated with
that card. We can generate features by aggregating
this information. These features are mostly numeric
– one example is, “What is the average amount of
transactions for this card?”. Extracting these fea-
tures is complicated by the fact that, when generat-
ing features that describe a transaction at time t, one
can only use aggregates generated about the card us-
ing the transactions that took place before t. This
makes this process computationally expensive during
the model training process, as well as when these fea-
tures are put to use.
Broadly, this divides the features we can generate into

two types: (a) so-called “transactional features,” which
are generated from transactional attributes alone, and
(b) features generated using historical data along with
transactional features. Given the number of attributes
and aggregation functions that could be applied, there
are numerous potential options for both of these feature
types.

Our goal is to automatically generate numerous fea-
tures and test whether they can predict fraud. To
do this, we use an automatic feature synthesis algo-
rithm called Deep Feature Synthesis (Kanter and Veera-
machaneni, 2015). An implementation of the algorithm,
along with numerous additional functionalities, is avail-
able as open source tool called featuretools (Fea-
ture Labs, 2017). We exploit many of the unique func-
tionalities of this tool in order to to achieve three things:
(a) a rich set of features, (b) a fraud model that achieves

Original Fraud Non-Fraud
of Cards 34378 36848

of fraudulent transactions 111,897 0
of non-fraudulent transactions 4,731,718 4,662,741

of transactions 4,843,615 4,662,741

Table 3: The representative sample data set we extracted for training.

higher precision, and (c) approximate versions of the
features that make it possible to deploy this solution,
which we are able to create using a unique function-
ality provided by the library. In the next subsection,
we describe the algorithm and its fundamental building
blocks. We then present the types of features that it gen-
erated.

6.1 Deep Feature Synthesis
The purpose of Deep Feature Synthesis (DFS) is to au-
tomatically create new features for machine learning us-
ing the relational structure of the dataset. The relational
structure of the data is exposed to DFS as entities and
relationships.

An entity is a list of instances, and a collection of
attributes that describe each one – not unlike a table in a
database. A transaction entity would consist of a set of
transactions, along with the features that describe each
transaction, such as the transaction amount, the time of
transaction, etc.

A relationship describes how instances in two enti-
ties can be connected. For example, the point of sale
(POS) data and the historical data can be thought of as
a “Transactions” entity and a ”Cards” entity. Because
each card can have many transactions, the relationship
between Cards and Transactions can be described as a
“parent and child” relationship, in which each parent
(Card) has one or more children (Transactions).

Given the relational structure, DFS searches a built-
in set of primitive feature functions, or simply called
“primitives”, for the best ways to synthesize new fea-
tures. Each primitive in the system is annotated with
the data types it accepts as inputs and the data type it
outputs. Using this information, DFS can stack multi-
ple primitives to find deep features that have the best
predictive accuracy for a given problems.

The primitive functions in DFS take two forms.
– Transform primitives: This type of primitive creates a

new feature by applying a function to an existing col-
umn in a table. For example, the Weekend primitive

could accept the transaction date column as input and
output a columns indicating whether the transaction
occurred on a weekend.

– Aggregation primitives: This type of primitive uses
the relations between rows in a table. In this dataset,
the transactions are related by the id of the card that
made them. To use this relationship, we might apply
the Sum primitive to calculate the total amount spent
to date by the card involved in the transaction.

Synthesizing deep features: For high value predic-
tion problems, it is crucial to explore a large space of
potentially meaningful features. DFS accomplishes this
by applying a second primitive to the output of the first.
For example, we might first apply the Hour transform
primitive to determine when during the day a transac-
tion was placed. Then we can apply Mean aggregation
primitive to determine average hour of the day the
card placed transactions. This would then read like
cards.Mean(Hour(transactions.date))
when it is auto-generated. If the card used in the
transaction is typically only used at one time of the day,
but the transaction under consideration was at a very
different time, that might be a signal of fraud.

Following this process of stacking primitives, DFS
enumerates many potential features that can be used for
solving the problem of predicting credit card fraud. In
the next section, we describe the features that DFS dis-
covered and their impact on predictive accuracy.

Data used Number of features
OHE Numeric

Transactional 91 2
Historical 192 44

7. Modeling
After the feature engineering step, we have 236 features
for 4,843,615 transactions. Out of these transactions,
only 111,897 are labeled as fraudulent. With machine
learning, our goal is to (a) learn a model that, given the
features, can predict which transactions have this label,

Features aggregating information from all the past transactions
Expression Description

cards.MEAN(transactions.amount) Mean of transaction amount
cards.STD(transactions.amount) Standard deviation of the transaction amount

cards.AVG TIME BETWEEN(transactions.date) Average time between subsequent transactions
cards.NUM UNIQUE(transactions.DAY(date)) Number of unique days

cards.NUM UNIQUE(transactions.tradeid) Number of unique merchants
cards.NUM UNIQUE(transactions.mcc) Number of unique merchant categories

cards.NUM UNIQUE(transactions.acquirerid) Number of unique acquirers
cards.NUM UNIQUE(transactions.country) Number of unique countries

cards.NUM UNIQUE(transactions.currency) Number of unique currencies

Table 4: Features generated using DFS primitives. Each feature aggregates data pertaining to past transactions from
the card. The left column shows how the feature is computed via. an expression. The right column describes the
feature in English. These features capture patterns in the transactions that belong to a particular card. For example,
what was the mean value of the

(b) evaluate the model and estimate its generalizable ac-
curacy metric, and (c) identify the features most impor-
tant for prediction. To achieve these three goals, we uti-
lize a random forest classifier, which uses subsampling
to learn multiple decision trees from the same data.
Learning the model: We used scikit-learn’s
classifier with 100 trees by setting
n estimators=100, and used class weight =
’balanced’. The “balanced” mode uses the values
of labels to automatically adjust weights so that they
are inversely proportional to class frequencies in the
input data.
Identifying important features: The random forests
used in our model allow us to calculate the relative fea-
ture importances. These are determined by calculat-
ing the average number of training examples the fea-
ture separated in the decision trees that used it. We use
the model trained using all the training data and extract
feature importances.

8. Evaluating the model
To enable comparison in terms of “false positives”, we
assess the model comprehensively. Our framework in-
volves (a) meticulously splitting the data into multiple
exclusive subsets, (b) evaluating the model for machine
learning metrics, and (c) comparing it to two different
baselines. Later, we evaluate the model in terms of the
financial gains it will achieve (in Section 10.).
Machine learning metric To evaluate the model, we
assessed several metrics, including the area under
the receiver operating curve (AUC-ROC). Since non-

fraudulent transactions outnumber fraudulent transac-
tions 1000:1, we first pick the operating point on the
ROC curve (and the corresponding threshold) such that
the true positive rate for fraud detection is > 89%,
and then assess the model’s precision, which mea-
sures how many of the blocked transactions were in fact
fraudulent. For the given true positive rate, the precision
reveals what losses we will incur due to false positives.
Data splits: We first experiment with all the cards that
had one or more fraudulent transactions. To evaluate
the model, we split it into mutually exclusive subsets,
while making sure that fraudulent transactions are pro-
portionally represented each time we split. We do the
following:
– we first split the data into training and testing sets.

We use 55% of the data for training the model, called
Dtrain, which amounts to approximately 2.663 mil-
lion transactions,

– we use an additional 326K, called Dtune, to identify
the threshold - which is part of the training process,

– the remaining 1.852 million million transactions are
used for testing, noted as Dtest.

Baselines: We compare our model with two baselines.
– Transactional features baseline: In this baseline,

we only use the fields that were available at the time
of the transaction, and that are associated with it. We
do not use any features that were generated using his-
torical data via DFS. We use one-hot-encoding
for categorical fields. A total of 93 features are gen-
erated in this way. We use a random forest classifier,

with the same parameters as we laid out in the previ-
ous section.

– Current machine learning system at BBVA: For
this baseline, we acquired risk scores that were gen-
erated by the existing system that BBVA is currently
using for fraud detection. We do not know the exact
composition of the features involved, or the machine
learning model. However, we know that the method
uses only transactional data, and probably uses neural
networks for classification.

Evaluation process:
– Step 1: Train the model using the training data -
Dtrain.

– Step 2: Use the trained model to generate prediction
probabilities, Ptu for Dtune.

– Step 3: Use these prediction probabilities, and true
labels Ltu for Dtune to identify the threshold. The
threshold γ is given by:

γ = argmax
γ

precisionγ × u
(
tprγ − 0.89

)
(1)

where tprγ is the true positive rate that can be
achieved at threshold γ and u is a unit step function
whose value is 1 when tprγ ≥ 0.89. The true pos-
itive rate (tpr) when threshold γ is applied is given
by:

tprγ =

∑
i

δ(P itu ≥ γ)∑
i

Litu
,∀i, where Litu = 1

(2)
where δ(.) = 1 when P itu ≥ γ and 0 otherwise. Sim-
ilarly, we can calculate fprγ (false positive rate) and
precisionγ .

– Step 4: Use the trained model to generate predic-
tions for Dtest. Apply the threshold γ and gener-
ate predictions. Evaluate precision, recall and
f-score. Report these metrics.

9. Results and discussion
DFS solution: In this solution we use the features
generated by the DFS algorithm as implemented in
featuretools. A total of 236 features are gener-
ated, which include those generated from the fields as-
sociated with the transaction itself. We then used a
random forest classifier with the hyperparameter set de-
scribed in the previous section.

Tune

Figure 2: The process of splitting data into training
/testing sets, followed by validation. Starting with ap-
proximately 9.5MM transactions, we split them into
sets according to which cards had fraudulent transac-
tions and which did not. For the 4,843,615 transactions
from the cards that had fraudulent activity, we split them
into three groups: 2.663 million for training, 326K for
identifying threshold and 1.852 million for testing.

Figure 3: The process of using a trained model in real
time. When a transaction is made, binary “yes”/“no”
features are extracted from the transaction. Features
that quantify patterns from the history of the card’s
transactions are extracted. For example, the feature
“Number of unique merchants this card had transac-
tions with in the past” is extracted by identifying all the
transactions for this card up to the current time and com-
puting on it. Both of these feature sets are passed to the
machine learning model to make predictions.

In our case study, the transactional features baseline
system has a false positive rate of 8.9%, while the ma-
chine learning system with DFS features has a false pos-
itive rate of 2.96%, a reduction of 6%.

When we fixed the true positive rate at > 89%,

Metric Transactional Current system DFS
Precision 0.187 0.1166 0.41

F-Score 0.30 0.20 0.56

Table 5: Precision and f-score achieved in de-
tecting non-fraudulent transactions at the fixed recall
(a.k.a true positive rate) of >= 0.89. We com-
pare the performance of features generated using the
deep feature synthesis algorithm to those generated by
“one-hot-encoding’’ of transactional attributes,
and those generated by the baseline system currently
being used. These baselines are described in Section 9.
. A

our precision for the transactional features baseline was
0.187. For the model that used DFS features, we got
a precision of 0.41, a >2x increase over the baseline.
When compared to the current system being used in
practice, we got a >3x improvement in precision. The
current system has a precision of only about 0.1166.

10. Financial evaluation of the model
To assess the financial benefit of reducing false posi-
tives, we first detail the impact of false positives, and
then evaluate the three solutions. When a false positive
occurs, there is the possibility of losing a sale, as the
customer is likely to abandon the item s/he was trying
to buy. A compelling report published by Javelin Strat-
egy & Research reports that these blocked sales add up
to $118 billion, while the cost of real card fraud only
amounts to $9 billion (Pascual and Van Dyke, 2015).
Additionally, the same (Pascual and Van Dyke, 2015)
study reports that 26% of shoppers whose cards were
declined reduced their shopping at that merchant fol-
lowing the decline, and 32% stopped entirely. There are
numerous other costs for the merchant when a customer
is falsely declined 4.

From a card issuer perspective, when possibly au-
thentic sales are blocked, two things can happen: the
customer may try again, or may switch to a different is-
suer (different card). Thus issuers also lose out on mil-
lions in interchange fees, which are assessed at 1.75%
of every transaction.5 Additionally, it also may cause
customer retention problems. Hence, banks actively try

4https://blog.riskified.com/true-cost-declined-orders/
5”Interchange fee” is a term used in the payment card in-

dustry to describe a fee paid between banks for the acceptance
of card-based transactions. For sales/services transactions, the

to reduce the number of cards affected by false posi-
tives.

To evaluate the financial implications of increasing
the precision of fraud detection from 0.1166 to 0.41, we
do the following:

– We first predict the label for the 1.852 million trans-
actions in our test dataset using the model and the
threshold derived in Step 3 of the “evaluation pro-
cess”. Given the true label, we then identify the trans-
actions that are falsely labeled as frauds.

– We assess the financial value of the false positives by
summing up the amount of each of the transactions
(in Euros).

– Assuming that 50% of these sales may successfully
go through after the second try, we estimate the loss
in sales using the issuer’s card by multiplying the to-
tal sum by 0.5.

– Finally, we assess the loss in interchange fees for the
issuer at 1.75% of the number in the previous step.
This is the cost due to false positives - costfp

– Throughout our analysis, we fixed the true positive
rate at 89%. To assess the losses incurred due to the
remaining 1̃0%, we sum up the total amount across
all transactions that our model failed to detect as
fraud. This is the cost due to false negatives - costfn

– The total cost is given by

totalcost = costfp + costfn

By doing the simple analysis as above, we found that
our model generated using the DFS features was able to
reduce the false positives significantly and was able to
reduce the costfp when compared to BBVA’s solution
(e39,341.88 vs. e319,421.93). But it did not perform
better then BBVA overall in terms of the total cost, even
though there was not a significant difference in the num-
ber of false negatives between DFS based and BBVA’s
system. Table 6 presents the detailed results when we
used our current model as if. This meant that BBVA’s
current system does really well in detecting high valued
fraud. To achieve similar effect in detection, we decided
to re-tune the threshold.
Retuning the threshold: To tune the threshold, we fol-
low the similar procedure described in Section 8., under
subsection titled “Evaluation process”, except for one

merchant’s bank (the ”acquiring bank”) pays the fee to a cus-
tomer’s bank (the ”issuing bank”).

Method False postitives False Negatives Total Cost e
Number Cost e Number Cost e

Current system 289,124 319,421.93 4741 125,138.24 444,560
Transactional features only 162,302 96,139.09 5061 818,989.95 915,129.05

DFS 53,592 39,341.88 5247 638,940.89 678,282.77

Table 6: Losses incurred due to false positives and false negatives. This table shows the results when threshold
is tuned to achieve tpr ≥ 0.89. Method: We aggregate the amount for each false positive and false negative. False
negatives are the frauds that are not detected by the system. We assume the issuer fully reimburses this to the client.
For false positives, we assume that 50% of transactions will not happen using the card and apply a factor of 1.75%
for interchange fee to calculate losses. These are estimates for the validation dataset which contained approximately
1.852 million transactions.

change. In Step 2 we weight the probabilities gener-
ated by the model for a transaction by multiplying the
amount of the transaction to it. Thus,

P itu ← P itu × amounti (3)

We then find the threshold in this new space. For
test data, to make a decision we do a similar transfor-
mation of the probabilities predicted by a classifier for
a transaction. We then apply the threshold to this new
transformed values and make a decision. This weight-
ing essentially reorders the the transactions. Two trans-
actions both with the same prediction probability from
the classifier, but vastly different amounts, can have dif-
ferent predictions.

Table 7 presents the results when this new
threshold is used. A few points are noteworthy:

– DFS model reduces the total cost BBVA would in-
cur by atleast 190K euros. It should be noted that
these set of transactions, 1.852 million, only repre-
sent a tiny fraction of overall volume of transactions
in a year. We further intend to apply this model to
larger dataset to fully evaluate its efficacy.

– When threshold is tuned considering financial im-
plications, precision drops. Compared to the pre-
cision we were able to achieve previously, when we
did not tune it for high valued transactions, we get
less precision (that is more false positives). In order
to save from high value fraud, our threshold gave up
some false positives.

– “Transactional features only” solution has better
precision than existing model, but smaller finan-
cial impact: After tuning the threshold to weigh
high valued transactions, the baseline that generates
features only using attributes of the transaction (and

no historical information) still has a higher precision
than the existing model. However, it performs worse
on high value transaction so the overall financial im-
pact is the worse than BBVA’s existing model.

– 54% reduction in the number of false positives.
Compared to the current BBVA solution, DFS based
solution cuts the number of false positives by more
than a half. Thus reduction in number of false pos-
itives reduces the number of cards that are false
blocked - potentially improving customer satisfaction
with BBVA cards.

11. Real-time deployment considerations
So far, we have shown how we can utilize complex fea-
tures generated by DFS to improve predictive accuracy.
Compared to the baseline and the current system, DFS-
based features that utilize historical data improve the
precision by 52% while maintaining the recall at 9̃0%.

However, if the predictive model is to be useful in
real life, one important consideration is: how long does
it take to compute these features in real time, so that
they are calculated right when the transaction happens?
This requires thinking about two important aspects:

– Throughput: This is the number of predictions sought
per second, which varies according to the size of
the client. It is not unusual for a large bank to re-
quest anywhere between 10-100 predictions per sec-
ond from disparate locations.

– Latency: This is the time between when a prediction
is requested and when it is provided. Latency must be
low, on the order of milliseconds. Delays cause an-
noyance for both the merchant and the end customer.

Method False postitives False Negatives Total Cost
(Euros)Number Cost e Number Cost e

Current system 289,124 319,421.93 4741 125,138.24 444,560
Transactional features only 214,705 190,821.51 4607 686,626.40 877,447

DFS 133,254 183,502.64 4729 71,563.75 255,066

Table 7: Losses incurred due to false positives and false negatives. This table shows the results when the threshold
is tuned to consider high valued transactions. Method:We aggregate the amount for each false positive and false
negative. False negatives are the frauds that are not detected by the system. We assume the issuer fully reimburses
this to the client. For false positives, we assume that 50% of transactions will not happen using the card and apply a
factor of 1.75% for interchange fee to calculate losses. These are estimates for the validation dataset which contained
approximately 1.852 million transactions.

Figure 4: The process of approximating of feature values. For a transaction that happens at 1 PM on August 24, we
can extract features by aggregating from transactions up to that time point, or by aggregating up to midnight of August
23, or midnight of August 20, and so on. Not shown here, these approximations implicitly impact how frequently the
features need to be computed. In the first case, one has to compute the features in real time, but as we move from left
to right, we go from computing on daily basis to once a month.

While throughput is a function of how many requests
can be executed in parallel as well as the time each re-
quest takes (the latency), latency is strictly a function
of how much time it takes to do the necessary compu-
tation, make a prediction, and communicate the predic-
tion to the end-point (either the terminal or an online or
digital payment system). When compared to the pre-
vious system in practice, using the complex features
computed with DFS adds the additional cost of com-
puting features from historical data, on top of the ex-
isting costs of creating transactional features and exe-
cuting the model. Features that capture the aggregate
statistics can be computed in two different ways:

– Use aggregates up to the point of transaction: This

requires having infrastructure in place to query and
compute the features in near-real time, and would ne-
cessitate streaming computation.

– Use aggregates computed a few time steps earlier:
We call these approximate features – that is, they are
the features that were current a few time steps t ago.
Thus, for a transaction happening at 1PM, August 24,
we could use features generated on August 1 (24 days
old). This enables feature computation in a batch
mode: we can compute features once every month,
and store them in a database for every card. When
making a prediction for a card, we query for the fea-
tures for the corresponding card. Thus, the real-time
latency is only affected by the query time.

It is possible that using old aggregates could lead
to a loss of accuracy. To see whether this would af-
fect the quality of the predictions, we can simulate
this type of feature extraction during the training pro-
cess. Featuretools includes an option called ap-
proximate, which allows us to specify the intervals at
which features should be extracted before they are fed
into the model. We can choose approximate = "1
day", specifying that Featuretools should only aggre-
gate features based on historical transactions on a daily
basis, rather than all the way up to the time of transac-
tion. We can change this to approximate = "21
days" or approximate = "35 days" 6. Fig-
ure 4 illustrates the process of feature approximation.
To test how different metrics of accuracy are effected –
in this case, the precision and the f1-score – we tested
for 4 different settings: {1 day, 7 days, 21 days, and 35
days}.

Using this functionality greatly affects feature com-
putation time during the model training process. By
specifying a higher number of days, we can dramati-
cally reduce the computation time needed for feature
extraction. This enables data scientists to test their fea-
tures quickly, to see whether they are predictive of the
outcome.

Table 8 presents the results of the approximation
when threshold has been tuned to simply achieve
> 0.89 tpr. In this case, there is a loss of 0.05 in pre-
cision when we calculate features every 35 days.

In Table 9 presents the precision and
f1-score for different levels of approximation,
when threshold is tuned taking the financial value
of the transaction into account. Surprisingly, we note
that even when we compute features once every 35
days, we do not loose any precision. However, we
loose approximately 67K euros in money.

Implications: This result has powerful implications
for our ability to deploy a highly precise predictive
model generated using a rich set of features. It im-
plies that the bank can compute the features for all cards
once every 35 days, and still be able to achieve bet-
ter accuracy then the baseline method that uses only
transactional features. Arguably, a 0.05 increase in
precision as per Table 8 and e67K benefit as per
Table 9 is worthwhile in some cases, but this should be
considered alongside the costs it would incur to extract

6Detailed code examples using approximate are given
in Appendix

features on a daily basis. (It is also important to note
that this alternative still only requires feature extraction
on a daily basis, which is much less costly than real
time.)

12. Next steps
Our next steps with the method developed in this paper
are as follows:

– Evaluate financial impact of the model on all 900 mil-
lion transactions.

– Measure impact of reducing false positives on cus-
tomer retention.

– Test the system performance on live data in produc-
tion.

Acknowledgements
BBVA authors would like to acknowledge their collab-
oration with the Computer Science and Artificial intel-
ligence laboratory (CSAIL) alliances program.

Open source acknowledgements
This work would not have been possible without the
open source software Featuretools and the time
spent by software engineers at Feature Labs support-
ing the open source release. Likewise, acknowledge-
ments are also due to open source software packages -
scikit-learn, and pandas.

References
Bhattacharyya, S.; Jha, S.; Tharakunnel, K.; and West-

land, J. C. 2011. Data mining for credit card
fraud: A comparative study. Decision Support Sys-
tems 50(3):602–613.

Brause, R.; Langsdorf, T.; and Hepp, M. 1999. Neural
data mining for credit card fraud detection. In Tools
with Artificial Intelligence, 1999. Proceedings. 11th
IEEE International Conference on, 103–106. IEEE.

Carcillo, F.; Dal Pozzolo, A.; Le Borgne, Y.-A.; Caelen,
O.; Mazzer, Y.; and Bontempi, G. 2017. Scarff: a
scalable framework for streaming credit card fraud
detection with spark. Information fusion.

Chan, P. K.; Fan, W.; Prodromidis, A. L.; and Stolfo,
S. J. 1999. Distributed data mining in credit card
fraud detection. IEEE Intelligent Systems and Their
Applications 14(6):67–74.

Metric DFS with feature approximation
1 7 21 35

Precision 0.41 0.374 0.359 0.36
F1-score 0.56 0.524 0.511 0.512

Total-cost 678,282.77 735,229.05 716,157.54 675,854.12

Table 8: Precision and f-score achieved in detecting non-fraudulent transactions at the fixed recall (a.k.a
true positive rate) of >= 0.89, when feature approximation is applied and threshold is tuned only to achieve a
tpr >= 0.89. A loss of 0.05 in precision is observed. No significant loss in financial value is noticed.

Metric DFS with feature approximation
1 7 21 35

Precision 0.22 0.223 0.23 0.236
F1-score 0.35 0.356 0.366 0.373

Total-cost 255,066 305,282.26 314,590.34 322,250.67

Table 9: Precision and f-score achieved in detecting non-fraudulent transactions at the fixed recall (a.k.a
true positive rate) of >= 0.89, when feature approximation is applied and threshold is tuned to weigh high valued
transactions more. No significant loss in precision is found, but an additional cost of approximately 67K euros is
incurred.

Feature primitive name Description
Aggregation

sum sum of a numeric feature, or the number of True values in a boolean feature
mean a mean value of a numeric feature ignoring

std finds the standard deviation of a numerical feature
count counts the number of non-null values

number of unique number of unique categorical variables
mode most common element in a categorical feature

average time between Maximum of absolute value of value minus previous value(diff)
Transformation

weekend transform datetime feature into boolean of weekend
day transform Datetime feature into the day (0 - 30) of the month, or Timedelta features into

number of days they encompass

Table 10: Numerical and Categorical feature functions

Domingos, P. 2012. A few useful things to know
about machine learning. Communications of the
ACM 55(10):78–87.

Feature Labs, I. 2017. Featuretools: automated feature
engineering.

Ghosh, S., and Reilly, D. L. 1994. Credit card
fraud detection with a neural-network. In System
Sciences, 1994. Proceedings of the Twenty-Seventh

Hawaii International Conference on, volume 3, 621–
630. IEEE.

Kanter, J. M., and Veeramachaneni, K. 2015. Deep
feature synthesis: Towards automating data science
endeavors. In Data Science and Advanced Analytics
(DSAA), 2015. 36678 2015. IEEE International Con-
ference on, 1–10. IEEE.

Panigrahi, S.; Kundu, A.; Sural, S.; and Majumdar,
A. K. 2009. Credit card fraud detection: A fusion

approach using dempster–shafer theory and bayesian
learning. Information Fusion 10(4):354–363.

Pascual, Al, M.-K., and Van Dyke, A. 2015. Overcom-
ing false positives: Saving the sale and the customer
relationship. In Javelin strategy and research reports.

Shen, A.; Tong, R.; and Deng, Y. 2007. Application of
classification models on credit card fraud detection.
In Service Systems and Service Management, 2007
International Conference on, 1–4. IEEE.

Stolfo, S.; Fan, D. W.; Lee, W.; Prodromidis, A.; and
Chan, P. 1997. Credit card fraud detection using
meta-learning: Issues and initial results. In AAAI-97
Workshop on Fraud Detection and Risk Management.

Whitrow, C.; Hand, D. J.; Juszczak, P.; Weston, D.; and
Adams, N. M. 2009. Transaction aggregation as a
strategy for credit card fraud detection. Data Mining
and Knowledge Discovery 18(1):30–55.

