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Abstract: A variety of fraud in Supply Chains may be detected either in physical parts or in cyber data. We 

use supervised machine learning to detect various fraud and misinformation in supply chains. The study is

based on a car manufacturer concerned with increasing fraud, ranging from fraudulent invoices to inflated

prices. Big data is provided for pattern recognition. A macro-level code is presented with actual algorithms

developed in Python. The research is continuing, while the current work is presented with promising results.
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1. INTRODUCTION

Fraud detection means facing the threat of fraud that facilitates

revealing and preventing losses (Aziz and Dowling, 2019). In 

the past, the fraud detection process was mainly based on audit

techniques that were with waste of time techniques (Abdallah

et al., 2016). However, in recent years, organizations depended

on artificial intelligence (AI) technology represented in

machine learning (ML) systems (Aziz and Dowling, 2019).

Thus, Behdad et al. (2012) have stated another definition of

nowadays fraud detection as it “tries to discover and identify 

fraudulent activities as they enter the systems and report them 

to a system administrator”. This means that it became an

automated process by using ML systems instead of manual 

techniques. The machine learning systems are implemented by

organizations to detect fraud or prevent it by depending on a

process of data analytics (Agrawal, 2018).

What is more is that the use of ML systems has increased in

organizations because of the significant benefits of its

application such as increasing fraud detection success and

accuracy. Therefore, examining the efficiency of different 

types of ML techniques and systems has been widely studied

by researchers to support the fraud detection organizations

with the highest efficient ML system to detect fraud (Bologa 

et al., 2013). The use of this modern technology is reflected

positively on the performance of organizations which is the 

main driver of success (Borges et al., 2020). Further, the

development of modern technology in the organizations is a 

source for the achievement of strategic organizational 

performance objectives (Oh and Pinsonneault, 2007).

2. MACHINE LEARNING

An applied form of AI technologies is machine learning (ML).

ML can is defined as using the machine to detect the different

types of data that have different patterns in an automated way

by computer systems and applications (Murphy, 2012 as cited

in Borges et al., 2020). Agrawal (2018) explains the ML as the 

automated systems which facilitate the prediction process

instead of human prediction efforts. ML systems are based on

a big data analytics process to perform its prediction task.
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According to Baesens et al. (2016), big data are used for

prediction analytics that can be found in machine learning

systems. This is supported by the previous statement in the

previous section by different scholars that big data is the 

generator of AI and its different technologies. This means that 

the ML is a system for big data analytics to predict something

(Borges et al., 2020). Furthermore, Yaram (2016) states that 

the learning of ML systems occurs from the input data that are

inserted in the system, then analyzed and make the prediction.

There are two types of ML systems that are commonly used.

Most of the scholars have agreed that the two types of ML that 

are implemented at organizations are supervised ML and

unsupervised ML (Dwivedi et al., 2019; Abdullah et al., 2016; 

Eshghi and Kargai, 2019; Hand et al., 2008; Glancy and

Yadav, 2011). However, some papers included a third type 

such as reinforcement ML (Kaplan and Haenlein, 2019) and

semi-supervised ML (Abdullah et al., 2016).

The first type of ML is supervised ML. According to Abdullah

et al. (2016), supervised ML is the most common type and it 

differs with its requiry to label the data. Furthermore, this type 

of ML requires training classifiers. The data inserted in the ML

are compared to labeled training data already have been put in

to identify an output (Aziz and Dowling, 2019).

The main positive aspect of this type is that the output of the

automated system is helpful for human use and classification

(ibid.). However, this type might be difficult to implement in

where the amount of data is not able to be labeled because of

their high volume (ibid.). The algorithms that are used in the 

supervised ML are not the same as the unsupervised ML. For

example, the classification algorithms that are used here are 

many such as support vector machine (SVM), artificial neural 

network, K-nearest neighbours and Naive Bayes in addition to

the regression algorithms (ibid.).

The development of the ML has different aspects that need to

be considered. As stated previously, the data are the generator

of the ML system (Agrawal, 2018; Kaplan and Haenlein, 2019; 

Dwivedi et al., 2019; Shin et al., 2020) in addition to the 

algorithms as a second generator (Choudhury et al., 2020).
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1. INTRODUCTION

Fraud detection means facing the threat of fraud that facilitates

revealing and preventing losses (Aziz and Dowling, 2019). In 

the past, the fraud detection process was mainly based on audit

techniques that were with waste of time techniques (Abdallah

et al., 2016). However, in recent years, organizations depended

on artificial intelligence (AI) technology represented in

machine learning (ML) systems (Aziz and Dowling, 2019).

Thus, Behdad et al. (2012) have stated another definition of

nowadays fraud detection as it “tries to discover and identify 

fraudulent activities as they enter the systems and report them 

to a system administrator”. This means that it became an

automated process by using ML systems instead of manual 

techniques. The machine learning systems are implemented by

organizations to detect fraud or prevent it by depending on a

process of data analytics (Agrawal, 2018).

What is more is that the use of ML systems has increased in

organizations because of the significant benefits of its

application such as increasing fraud detection success and

accuracy. Therefore, examining the efficiency of different 

types of ML techniques and systems has been widely studied

by researchers to support the fraud detection organizations

with the highest efficient ML system to detect fraud (Bologa 

et al., 2013). The use of this modern technology is reflected

positively on the performance of organizations which is the 

main driver of success (Borges et al., 2020). Further, the

development of modern technology in the organizations is a 

source for the achievement of strategic organizational 

performance objectives (Oh and Pinsonneault, 2007).

2. MACHINE LEARNING

An applied form of AI technologies is machine learning (ML).

ML can is defined as using the machine to detect the different

types of data that have different patterns in an automated way

by computer systems and applications (Murphy, 2012 as cited

in Borges et al., 2020). Agrawal (2018) explains the ML as the 

automated systems which facilitate the prediction process

instead of human prediction efforts. ML systems are based on

a big data analytics process to perform its prediction task.

1 Corresponding author: Mehran.Sepehri@Northampton.ac.uk

According to Baesens et al. (2016), big data are used for

prediction analytics that can be found in machine learning

systems. This is supported by the previous statement in the

previous section by different scholars that big data is the 

generator of AI and its different technologies. This means that 

the ML is a system for big data analytics to predict something

(Borges et al., 2020). Furthermore, Yaram (2016) states that 

the learning of ML systems occurs from the input data that are

inserted in the system, then analyzed and make the prediction.

There are two types of ML systems that are commonly used.

Most of the scholars have agreed that the two types of ML that 

are implemented at organizations are supervised ML and

unsupervised ML (Dwivedi et al., 2019; Abdullah et al., 2016; 

Eshghi and Kargai, 2019; Hand et al., 2008; Glancy and

Yadav, 2011). However, some papers included a third type 

such as reinforcement ML (Kaplan and Haenlein, 2019) and

semi-supervised ML (Abdullah et al., 2016).

The first type of ML is supervised ML. According to Abdullah

et al. (2016), supervised ML is the most common type and it 

differs with its requiry to label the data. Furthermore, this type 

of ML requires training classifiers. The data inserted in the ML

are compared to labeled training data already have been put in

to identify an output (Aziz and Dowling, 2019).

The main positive aspect of this type is that the output of the

automated system is helpful for human use and classification

(ibid.). However, this type might be difficult to implement in

where the amount of data is not able to be labeled because of

their high volume (ibid.). The algorithms that are used in the 

supervised ML are not the same as the unsupervised ML. For

example, the classification algorithms that are used here are 

many such as support vector machine (SVM), artificial neural 

network, K-nearest neighbours and Naive Bayes in addition to

the regression algorithms (ibid.).

The development of the ML has different aspects that need to

be considered. As stated previously, the data are the generator

of the ML system (Agrawal, 2018; Kaplan and Haenlein, 2019; 

Dwivedi et al., 2019; Shin et al., 2020) in addition to the 

algorithms as a second generator (Choudhury et al., 2020).
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3. FRAUD DETECTION 

One of the issues using AI is fraud. Fraud nowadays became 

an issue that has a significant negative impact. According to 

Levi and Burrows (2008, as cited in Aral et al., 2012), fraud is 

a technique that leads to an illegal profit for a fraudster or an 

illegal loss, in all sectors and fields such as insurance, customs, 

corporate, social security, and supply chain fraud (Pourhabibi 

et al., 2020; Ngai et al., 2011; Galeotti et al., 2020; Glancy and 

Yadav, 2011; Goode and Lacey, 2011; Abdallah et al., 2016).  

Furthermore, the main reason for classifying the fraud as a 

crime and a crucial issue that needs to be seriously faced is the 

high financial losses as a result of this crime (Galeotti et al., 

2020; Quah and Sriganesh, 2008). Moreover, it has an impact 

on the society values, law and economy (Abdallah et al., 

2016). Therefore, many organizations, authorities, corporates 

and businesses are trying to detect the fraud and fraudulent by 

enhancing their detection efforts (Craja et al., 2020; Goode and 

Lacey, 2011; Cecchini et al., 2010).  

The classifiers, algorithms and data mining techniques are all 

different names for the same categories which are the 

techniques that are used in the supervised ML systems 

(Bhattacharyya et al., 2011; Triepels et al., 2018; Craja et l., 

2020). The data mining techniques are the algorithms that 

generate the process of data analytics in the fraud detection 

ML (Bhattacharyya et al., 2011). Firstly, support vector 

machines (SVM) have been widely used to detect fraud as a 

classifier technique (Cecchini et al., 2010; Bhattacharyya et 

al., 2011). Furthermore, it uses the statistical learning theory 

that was founded by Vapnik in 1995 which makes it a 

statistics-based technique that generates a solution by using a 

linear model (ibid.). Therefore, SVMs are widely used in 

detecting fraud (Vanhoeyveld et al., 2020). Secondly, Random 

forests is a second classifier used in fraud detection. According 

to Bhattacharyya et al. (2011), random forests is a classifier 

model that can be defined as aggregated decision trees models 

which are characterized with flexibility and ability to analyse 

complex data.  

Furthermore, each decision tree involves ensembles and nodes 

which individually generate a prediction output for the fraud 

detection system which gives it a strength advantage in 

addition to its ease of use (ibid.). Thirdly, logistic regression 

(LR) as a third classifier has been used in fraud detection as 

well (Carneiro et al., 2017; Bhattacharyya et al., 2011; Zou and 

Kapoor, 2011). According to Ngai et al. (2011) and Shen et al. 

(2007) the LR technique is a mathematical technique that is 

used for the processing of the task of ML prediction before 

knowing the outcome. Specifically, it helps in predicting the 

fraud case before occurring by giving a probability percentage 

of having a fraud case (Shen et al., 2007). Furthermore, 

Bhattacharyya et al. (2011) argued that the task of prediction 

that this technique delivers is crucial in fraud detection and 

prevention.  

Four, artificial neural networks (NN) are effective classifiers 

for fraud detections well because they are useful for future 

prediction (Krauss et al., 2017). According to Shen et al. 

(2007), the NNs are non-linear mapping classifiers which are 

better than the statistical classifiers such as LR and SVMs in 

detecting financial fraud. One NN types is deep learning (DL) 

(Brahma et al., 2016). Moreover, DL as a process involves 

many layers which are learned from data and produce object 

recognition or detection (Shin et al., 2020). The recognition of 

DL has many examples such as voice recognition, image 

recognition, text recognition (King et al., 2020; Yaram, 2016).  

What is more is that the behavior mining is a crucial concept 

and factor in nowadays fraud detection systems because of its 

ability to profile, store and analyse the users’ behaviour which 
is a main component in nowadays feud detection systems 

(Sung and Liu, 2007). Additionally, the behavior consideration 

in this process means grouping and measuring the total of the 

repeated raw features which creates aggregated features (Dal 

Pozzolo et al., 2014). The paper of Bahnsen et al. (2016) has 

found that by combining the aggregated features with the raw 

features a has significant positive impact on the performance 

of the detection system by increasing it 200%. However, 

Eshghi and Kargari (2019) claim that the use of aggregated 

features in the detection system might have challenges such as 

decreasing accuracy and increasing time in addition to the 

probability of having a lack of historical data which can disrupt 

the aggregated features. According to Bhattacharyya et al. 

(2011), many studies concluded the efficiency and 

effectiveness of performance for the use of aggregated features 

with the random forests compared to other classifiers. 

Additionally, the use of aggregated features with SVMs and 

logistic regression has resulted in a good performance as well 

but not better than random forests (ibid.).  

According to Sung and Liu (2007), the fraud detection systems 

in general were based on classification algorithms in the past. 

For example, Naive Bayes classification has been introduced 

by Elkan et al in 1997 and it has been an effective and accurate 

classifier in analysing big data and learning (ibid.). Moreover, 

C4.5 is another classifier introduced by Quinlan in 1998 and 

was widely used in detecting fraud because of its ability to 

explain patterns in addition to the prediction task (ibid.). 

Further, Back-propagation is another classifier that was used 

and performed well in detecting fraud (ibid.). However, the use 

of these techniques is not effective in nowadays fraud 

detection because of its training set which are created and 

entered manually and leading to more complexity and effort 

(ibid.). Furthermore, the use of the past techniques is not 

appropriate for nowadays detection because of its inability to 

analyse behaviours data (ibid.).  

The modern classification tools have been used within 

different types of fraud which required developing fraud 

detection systems. The system generally is required to 

distinguish between the legitimacy data and the data which 

shows that there is fraud (Ngai et al., 2011). Therefore, to 

deliver the previous task, ML has been used to detect different 

types of fraud (Aparicio et al., 2020; Ngai et al., 2011). This 

can be shown as an automated computer system under the 

cover of ML (ibid.). According to Bologa et al. (2013), the data 

that generates the fraud detection systems are described as high 

volume and variety data which means that they are complex 

data and needs consideration. Furthermore, Aparicio et al. 

(2020) state that the data in the fraud detection system are 

called features which generate the system.  
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4. CASE STUDY 

The research used case study approach to create a conceptual 

design approach for fraud detection. The selected case was 

from a supply chain for a car manufacturer in an Asian country 

suffering from fraud and misbehaviour. The investigation may 

be based on qualitative or quantitative types of data, using a 

case. In the pilot study for this research, qualitative data was 

used for many reasons. If research is restricted to narrow the 

investigation of the research into a particular context as a case 

study, it will decrease time and resources in the research search 

(Rashid et al., 2019).  

The supply chain for the car manufacturer is concerned about 

fraudulent information from the vendors and distributors. The 

misinformation ranges from inflated invoices to an inaccurate 

accounting practice. In additions, parts may not be of adequate 

quality or with wrong specifications. This may be caused by 

intentional fraud by the vendors or by careless practice. Such 

misinformation can cause damages later in the supply chain or 

in the product quality. Detecting fraud in infrequent fraudulent 

practices may be difficult and time consuming with traditional 

tools. Historical big data, where some frauds were discovered, 

may be fed to the algorithms with machine supervised learning 

discovering patterns and leads to misinformation detection. 

This research project, limited in time, requires choosing the 

most efficient research method in terms of time. The primary 

qualitative data was collected by conducting interviews at the 

case study organization. According to Chesebro and Borisoff 

(2007), conducting interviews to support a research paper is a 

qualitative data collection. Furthermore, this qualitative tool is 

used to link the case study organization with the theoretical 

framework of the research, analyse and conduct a discussion 

later. According to Baskarada (2014), the case study research 

must be supported by a comprehensive theoretical framework 

which gives a background about the research questions’ fields 
that the case study will answer. The theoretical framework of 

the project is based on the high ranked journals identified.  

A pilot case was conducted initially to examine the signatures 

on invoices and purchase orders to be authentic and original. 

Supplier and client signature and stamp, sources of fraud have 

been mandated by law for each invoice or purchase order.   

5. MACHINE ALGORITHM 

The macro-level code below describes the logic and procedure 

used in our supervised ML. This is an artificial and informal 

language that helps researchers develop algorithms. It is a 

description of computer programming algorithms that uses the 

structured convention of programming languages but omits 

detailed subroutines or language specific syntax. 

The actual code is later developed in Python, which is a high-

level interpreted general-purpose programming language. Its 

design philosophy emphasizes code readability with its use of 

significant indentation. Reason for using the Python language 

in Machine Learning are its simple syntax. the development of 

applications with Python is fast when compared to many 

programming languages. Furthermore, it allows the developer 

to test algorithms without implementing them. Readable code 

is also vital for collaborative coding. 

Domain 1: Business problem (question) framing 

Task 1: Obtain or receive problem statement & usability 

statement  

Task 2: Identify stakeholders  

Task 3: Determine if problem is amendable to analytics 

solution 

Task 4: Refine problem statement and delineate 

constrains  

Task 5: Define an initial set of business benefits 

Task 6: Obtain stakeholder agreement on problem 

statement. 

Domain 2: Analytics problem framing 

Task 1: Reformulate the problem statement as an 

analytics problem  

Task 2: Develop a proposed set of drivers and 

relationships to outputs 

Task 3: State the set of assumptions related to the 

problem 

Task 4: Define key metrics of success 

Task 5: Obtain stakeholder agreement on the approach  

Domain 3: Data  

Task 1: Identify and prioritise data needs and resources 

Task 2: Acquire data 

Task 3: Harmonise, rescale, clean and share data 

Task 4: Identify relationships in data 

Task 5: Document and report findings 

Task 6: Refine business and analytics problem 

statements 

Domain 4: Methodology selection 

Task-1: Identify available problem solving approaches ( 

methods) 

Task-2: Select software tools 

Task-3: Test approaches (methods) 

Task-4: Select approached ( methods) 

Domain 5: Model building  

Task-1: Identify model structures 

Task-2: Run and evaluate models 

Task-3: Calibrate models and data 

Task-4: Integrate the models 

Task-5: Document and communicate findings 

Domain 6: Deployment 

Task 1: Perform business validation of the model  

Task 2: Deliver report with finding 

Task 3: Create model, usability & system requirements 

for production 

Task 4: Deliver production model/system 

Task 5: Support deployment 

Domain 7: Lifecycle Maintenance 

Task-1: Document initial structure  

Task-2: Track model quality 

Task-3: Recalibrate and maintain the model 

Task-4: Support training activities: 

Task-5: Evaluate business benefit of model over time 
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6. PILOT RESULTS 

An audit company has been chosen as a pilot case study of this 

research that audits more than 12 million invoices per month. 

Mandated by law to verify signatures and stamp for invoices, 

an invoice without signature is not valid and the organization 

has the right to avoid payment. The challenge of the manually 

checking of 12 million invoice per month is not feasible. To 

cope with this challenge, we leveraged AI with one innovative 

idea to detect fraud in the fastest way. 

The available sample size to teach artificial brain is about 8000 

invoice that is not enough but to boost learning process we had 

to generate some fake data by adopting different augmentation 

methods such as rotation, random erasing or fading and 

increase the sample size to 56000 invoices. Finally, the Yolv5 

as a pre-trained CNN on a platform that equipped with 

GPU3090 utilized and we got result. The final model supports 

us to scan monthly 12 million invoices just in 5 days that 

manually took about 60 months. Now targeted contractor 

benefits AI to detect improper invoice and fundamentally 

return invoices that submit improper or fraudulent claims. 

7. CONCLUSION 

Supply chains in many instances prone to fraud which may go 

undetected and cause financial and operational damages to the 

organizations. As big data becomes available through ERP and 

other supply chain information systems, computer algorithms 

are instrumental to discover any physical fraud such as wrong 

or low-quality parts or information fraud such as invoices with 

false signatures or numbers.  

With the recent advances in AI and ML heuristics and 

languages, fraud detection is imbedded in the systems to 

discover and examine any possibility of fraud in supply chains. 

This paper illustrated the application of ML in SC fraud 

detection after reviewed the basic concepts and the literature. 

Results of a pilot study proves the concept here.  
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