
Software Engineering
Topic 1

An Introduction to Software Engineering



Acknowledgement

These slides have been adapted from 
Pressman, R.S. (2015). Software Engineering : A 
Practioner's  Approach. 8th ed. McGraw-Hill 
Companies.Inc, Americas, New York.  ISBN : 978 1 259 
253157. Chapter 12, 13, 14, 15, 16, 17, and 18



LO 1 :    Describe the concepts of software
process models and the opportunity for potential 
business project

Learning Objectives



Contents

• Software Engineering

• Software Costs

• FAQs about Software Engineering

• What are the Costs of Software Engineering?

• What are Software Engineering Methods?

• What is CASE (Computer-Aided Software Engineering)

• What are the Attributes of Good Software?

• What are the Key Challenges Facing Software Engineering?

• Professional and Ethical Responsibility



OVERVIEW OF SOFTWARE ENGINEERING



Software Engineering

•The economies of ALL developed nations are dependent on software.

•More and more systems are software controlled

• Software engineering is concerned with theories, methods and tools 
for professional software development.

• Expenditure on software represents a 
significant fraction of GNP in all developed countries.



Software Costs

•Software costs often dominate computer system costs. The costs of 
software on a PC are often greater than the hardware cost.

• Software costs more to maintain than it does to develop. For systems 
with a long life, maintenance costs may be several times 
development costs.

•Software engineering is concerned with cost-effective software 
development.



FAQs about Software
Engineering

•What is software?

•What is software engineering?

•What is the difference between software engineering and computer 
science?

•What is the difference between software engineering and system 
engineering?

•What is a software process?

•What is a software process model?



FAQs about Software
Engineering

• Computer programs and associated documentation such as 
requirements, design models and user manuals.

• Software products may be developed for a particular customer or 
may be developed for a general market.

• Software products may be

– Generic - developed to be sold to a range of different customers 
e.g. PC software such as Excel or Word.

– Bespoke (custom) - developed for a single customer according to 
their specification.

• New software can be created by developing new programs, 
configuring generic software systems or reusing existing software.

What is software?



FAQs about Software
Engineering

• Web application

• Mobile application

• Cloud computing

• Product Line Software

Categories of software



FAQs about Software
Engineering

• Software engineering is an engineering discipline that is 
concerned with all aspects of software production.

• Software engineers should adopt a systematic and organised 
approach to their work and use appropriate tools and 
techniques depending on the problem to be solved, the 
development constraints and the resources available.

What is software engineering?



FAQs about Software
Engineering

• Computer science is concerned with theory and 
fundamentals; software engineering is concerned with the 
practicalities of developing and delivering useful software.

• Computer science theories are still insufficient to act as a 
complete underpinning for software engineering (unlike e.g. 
physics and electrical engineering).

What is the difference between software engineering 

and computer science?



FAQs about Software
Engineering

• System engineering is concerned with all aspects of 
computer-based systems development including hardware, 
software and process engineering. Software engineering is 
part of this process concerned with developing the software 
infrastructure, control, applications and databases in the 
system.

• System engineers are involved in system specification, 
architectural design, integration and deployment.

What is the difference between software engineering 

and system engineering?



FAQs about Software
Engineering

• A set of activities whose goal is the development or evolution of 
software.

• Generic activities in all software processes are:

– Specification - what the system should do and its development 
constraints

– Development - production of the software system

– Validation - checking that the software is what the customer wants

– Evolution - changing the software in response to changing demands.

What is a software process?



FAQs about Software
Engineering

• A simplified representation of a software process, presented 
from a specific perspective.

• Examples of process perspectives are

– Workflow perspective - sequence of activities;

– Data-flow perspective - information flow;

– Role/action perspective - who does what.

• Generic process models

– Waterfall;

– Iterative development;

– Component-based software engineering.

What is a software process model?



COST OF SOFTWARE ENGINEERING



What are the Costs
of Software Engineering?

• Roughly 60% of costs are development costs, 40% are testing costs. For custom 
software, evolution costs often exceed development costs.

• Costs vary depending on the type of system being developed and the 
requirements of system attributes such as performance and system reliability.

• Distribution of costs depends on the development model that is used.



What are the Costs
of Software Engineering?

Activity cost distribution
Waterfal l mod el

Iterat ive developme nt

Component-based software eng ineering

Development  and evo lu tion co sts fo r long-l ife time syst ems

System evolut ion

10 200 30 4000

System developmen t

Spec ificat ion Design Development Integrat ion and testing

25 5 0 75 1000

Spec ificat ion Development Integrat ion and testing

2 5 5 0 75 1 000

Spec ificat ion Itera tive  de velopment System te st ing

2 5 5 0 75 1 000



What are the Costs
of Software Engineering?

Product development costs

Spe cification Development System te sting

25 50 75 1000



SOFTWARE ENGINEERING METHODS, TOOLS, AND 
ATTRIBUTES 



What are Software
Engineering Methods?

• Structured approaches to software development 
which include system models, notations, rules, design 
advice and process guidance.

• Model descriptions

– Descriptions of graphical models which should be 
produced;

• Rules

– Constraints applied to system models;

• Recommendations

– Advice on good design practice;

• Process guidance

– What activities to follow.



What is CASE (Computer-Aided 
Software Engineering)

• Software systems that are intended to provide 

automated support for software process activities. 

• CASE systems are often used for method support.

• Upper-CASE

– Tools to support the early process activities of 

requirements and design;

• Lower-CASE

– Tools to support later activities such as programming, 

debugging and testing.



What are the Attributes of 
Good Software?

• The software should deliver the required functionality and 
performance to the user and should be maintainable, 
dependable and acceptable.

• Maintainability

– Software must evolve to meet changing needs;

• Dependability

– Software must be trustworthy;

• Efficiency

– Software should not make wasteful use of system 
resources;

• Acceptability

– Software must accepted by the users for which it was 
designed. This means it must be understandable, usable 
and compatible with other systems.



What are the Key Challenges
Facing Software Engineering?

• Heterogeneity, delivery and trust.

• Heterogeneity

– Developing techniques for building software that can 

cope with heterogeneous platforms and execution 

environments;

• Delivery

– Developing techniques that lead to faster delivery of 

software;

• Trust

– Developing techniques that demonstrate that software 

can be trusted by its users.



PROFESSIONAL AND ETHICAL RESPONSIBILITY 



Professional and 
Ethical Responsibility?

• Software engineering involves wider responsibilities 

than simply the application of technical skills.

• Software engineers must behave in an honest and 

ethically responsible way if they are to be respected 

as professionals.

• Ethical behaviour is more than simply upholding the 

law.



Professional and 
Ethical Responsibility

• Confidentiality 

– Engineers should normally respect the 
confidentiality of their employers or clients 
irrespective of whether or not a formal 
confidentiality agreement has been signed.

• Competence 

– Engineers should not misrepresent their level of 
competence. They should not knowingly accept 
work which is outwith their competence.

Issues of professional responsibility



Professional and 
Ethical Responsibility

• Intellectual property rights 

– Engineers should be aware of local laws governing the 
use of intellectual property such as patents, copyright, 
etc. They should be careful to ensure that the 
intellectual property of employers and clients is 
protected.

• Computer misuse 

– Software engineers should not use their technical skills 
to misuse other people’s computers. Computer misuse 
ranges from relatively trivial (game playing on an 
employer’s machine, say) to extremely serious 
(dissemination of viruses). 

Issues of professional responsibility



References

• Sommerville, I.  (2011), Software Engineering  9th ed, Pearson,  Addison 
Wesley United states of America, ISBN 13 : 978 0 13 705346 9.

• What can we learn from software engineering and why?,  
http://www.youtube.com/watch?v=8kG15VoNxhc

• How to Reduce Cost of Software Development,  
http://www.youtube.com/watch?v=gKeka3zn198

http://www.youtube.com/watch?v=8kG15VoNxhc
http://www.youtube.com/watch?v=gKeka3zn198


Q & A





Software Engineering

Topic 2

Software Process Model



Acknowledgement

These slides have been adapted from
Pressman, R.S. (2015). Software Engineering : A
Practioner's Approach. 8th ed. McGraw-Hill
Companies.Inc, Americas, New York. ISBN : 978
1 259 253157. Chapter 3 , 4, 5 and 6



LO 1 : Describe the concepts of software 
process models and the opportunity 
for potential business project

Learning Objectives



Contents

• Software Process Structure

• Process Models 

• Agile Development

• Human Aspects of Software Engineering



SOFTWARE PROCESS STRUCTURE



Software Process 
Structure

Software Process 
Framework



Process Flow

Software Process Structure



Software Process 
Structure

• A task set defines the actual work to be done to 
accomplish the objectives of a software 
engineering action.
• A list of the task to be accomplished

• A list of the work products to be produced

• A list of the quality assurance filters to be applied

Identifying a Task Set



Process Patterns
• A process pattern

• describes a process-related problem that is encountered 
during software engineering work, 

• identifies the environment in which the problem has 
been encountered, and 

• suggests one or more proven solutions to the problem. 

• Stated in more general terms, a process pattern provides 
you with a template [Amb98]—a consistent method for 
describing problem solutions within the context of the 
software process.

Software Process Structure



Process Pattern Types
• Stage patterns—defines a problem associated with 

a framework activity for the process.

• Task patterns—defines a problem associated with a 
software engineering action or work task and 
relevant to successful software engineering practice

• Phase patterns—define the sequence of framework 
activities that occur with the process, even when 
the overall flow of activities is iterative in nature

Software Process Structure



PROCESS MODEL



Process Models
• Prescriptive process models advocate an orderly approach to software 

engineering

That leads to a few questions …

• If prescriptive process models strive for structure and order, are they 
inappropriate for a software world that thrives on change? 

• Yet, if we reject traditional process models (and the order they imply) and 
replace them with something less structured, do we make it impossible to 
achieve coordination and coherence in software work?



Process Models

The Waterfall Model

Communicat ion 

Planning 

Modeling

Const ruct ion
Deployment  

analysis 

design
code 

t est

project  init iat ion 

requirement  gat hering estimating 

scheduling 

tracking

delivery 

support  

f eedback



Process Models

The V-Model



C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t  

  d e l i v e r y  

  f e e d b a c k

analy s is  

des ign c ode 

t es t

increment  # 1

increment  # 2

delivery  of 

1st  increment

delivery  of  

2nd increment

delivery  of 

nt h increment

increment  # n

project  calendar t ime

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t  

  d e l i v e r y  

  f e e d b a c k

analy s is  

des ign c ode 

t es t

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t  

  d e l i v e r y  

  f e e d b a c k

analy s is  

des ign
c ode 

t es t

The Incremental-Model

Process Models



Evolutionary Models: Prototyping

Communicat ion

Qu ick p lan

Const ruct ion 

of  

prot ot ype

Mo de lin g  

   Qu ick d e sig n

De live ry 

& Fe e dback

Deployment

communication

Quick
plan

Modeling
Quick design

Construction
of prototype

Deployment
delivery &
feedback

Process Models



Evolutionary Models: The Spiral

communication

planning 

modeling

construction
deployment 

   deliv ery  

    f eedback

start

analy sis 

design

code 

test

estimation 

scheduling 

risk analy sis

Process Models



Evolutionary Models: Concurrent

Under review

Baselined

Done

Under

revision

Await ing

changes

Under

development

none

Modeling act ivit y

represents the state

of a software engineering

act ivity or task

Process Models



Specialized Process 
Models

• Component based development—the process to apply when reuse is a 
development objective

• Formal methods—emphasizes the mathematical specification of requirements

• AOSD—provides a process and methodological approach for defining, 
specifying, designing, and constructing aspects

• Unified Process—a “use-case driven, architecture-centric, iterative and 
incremental” software process closely aligned with the Unified Modeling 
Language (UML)



AGILE DEVELOPMENT



Agile Development
Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more

Source: agilemanifesto.org



Agile Development
What is “Agility”?

• Effective (rapid and adaptive) response to change

• Effective communication among all stakeholders

• Drawing the customer onto the team

• Organizing a team so that it is in control of the work 
performed

Yielding …

• Rapid, incremental delivery of software



Agility and the Cost of Change

Agile Development



Extreme Programming (XP)
• The most widely used agile process, originally 

proposed by Kent Beck

• XP Planning
• Begins with the creation of “user stories”

• Agile team assesses each story and assigns a cost

• Stories are grouped to for a deliverable increment

• A commitment is made on delivery date

• After the first increment “project velocity” is used to help define 
subsequent delivery dates for other increments

Agile Development



Extreme Programming (XP)
• XP Design

• Follows the KIS principle
• Encourage the use of CRC cards (see Chapter 8)
• For difficult design problems, suggests the creation of “spike solutions”—a 

design prototype
• Encourages “refactoring”—an iterative refinement of the internal program 

design

• XP Coding
• Recommends the construction of a unit test for a store before coding 

commences
• Encourages “pair programming”

• XP Testing
• All unit tests are executed daily
• “Acceptance tests” are defined by the customer and executed to assess 

customer visible functionality

Agile Development



Extreme Programming (XP)

unit  t est  

cont inuous int egrat ion 

accept ance t est ing

pair 

programming

Release

user st ories 

   values 

   accept ance t est  crit eria 

it erat ion plan

simple design 

  CRC cards

spike solut ions 

   prot ot ypes

refact oring

sof tware increment

project  velocit y computed

Agile Development



Adaptive Software Development

• Originally proposed by Jim Highsmith

• ASD — distinguishing  features

• Mission-driven planning

• Component-based focus

• Uses “time-boxing” 

• Explicit consideration of risks

• Emphasizes collaboration for requirements gathering

• Emphasizes “learning” throughout the process

Agile Development



Adaptive Software Development
adapt ive cycle planning 

  uses mission st at ement  

  project  const raint s 

  basic requirement s 

t ime-boxed release plan

Requirement s gat hering 

   JAD 

   mini-specs

component s implement ed/ t est ed 

   focus groups for feedback 

   formal t echnical reviews 

post mort ems

sof tware increment

adjustments for subsequent  cycles

Release

Agile Development



Dynamic Systems Development Method
• Promoted by the DSDM Consortium (www.dsdm.org)

• DSDM—distinguishing features
• Similar in most respects to XP and/or ASD

• Nine guiding principles

• Active user involvement is imperative. 

• DSDM teams must be empowered to make decisions.

• The focus is on frequent delivery of products. 

• Fitness for business purpose is the essential criterion for acceptance of 
deliverables.

• Iterative and incremental development is necessary to converge on an 
accurate business solution.

• All changes during development are reversible.

• Requirements are baselined at a high level

• Testing is integrated throughout the life-cycle.

Agile Development

http://www.dsdm.org/


Dynamic Systems Development Method

Agile Development



Scrum
• Originally proposed by Schwaber and Beedle

• Scrum—distinguishing features

• Development work is partitioned into “packets”

• Testing and documentation are on-going as the product 
is constructed

• Work occurs in “sprints” and is derived from a “backlog” 
of existing requirements

• Meetings are very short and sometimes conducted 
without chairs

• “demos” are delivered to the customer with the time-
box allocated

Agile Development



Scrum

Agile Development

Scrum Process Flow (used with permission)



Crystal

• Proposed by Cockburn and Highsmith

• Crystal—distinguishing features

• Actually a family of process models that allow 
“maneuverability” based on problem characteristics

• Face-to-face communication is emphasized

• Suggests the use of “reflection workshops” to review 
the work habits of the team

Agile Development



Feature Driven Development
• Originally proposed by Peter Coad et al

• FDD—distinguishing features

• Emphasis is on defining “features”
• a feature “is a client-valued function that can be implemented 

in two weeks or less.”

• Uses a feature template
• <action> the <result> <by | for | of | to> a(n) <object>

• A features list is created and “plan by feature” is 
conducted

• Design and construction merge in FDD

Agile Development



Feature Driven Development

Reprinted with permission of Peter Coad

Agile Development



Agile Modeling
• Originally proposed by Scott Ambler

• Suggests a set of agile modeling principles

• Model with a purpose

• Use multiple models

• Travel light

• Content is more important than representation

• Know the models and the tools you use to create them

• Adapt locally

Agile Development



HUMAN ASPECT OF SOFTWARE ENGINEERING 



Human Aspects of 
Software Engineering

Characteristics of Software Engineer
Erdogmus [erd09] identifies seven traits that are present when an
individual software engineer exhibits “superprofesional” behavior.

An effective software engineer :

• has a sense of individual responsibility

• has an acute awareness

• is brutally honest

• exhibits resilience under prerssure

• has a heightened sense of fairness

• exhibits attention to detail

• is pragmatic



The Psychology of Software Engineering
In a seminal paper on the psychology of software engineering, Bill 
curtis and Dave Walz [Cur90] suggest a layered behavioral model 
for software development.

Human Aspects of 
Software Engineering



• An effective team should foster a sense of trust

• Software engineers on the team should trust the skills 
and competence of their peers and their managers.

• The team should encourage a sense of improvement by 
periodically reflecting on its approach to software 
engineering and looking for ways to improve their work

Human Aspects of 
Software Engineering



Team Structure

Constantine [Con93] suggests four “organizational paradigms” for software engineering teams

1. A closed paradigm; a team along a traditional hierarchy of authority

2. A random paradigm;  a team loosely and depends on individual initiative of the team 
members

3. An open paradigm; a team in a manner that achieves some of the controls associated with the 
closed paradigm but also much of the innovation that occurs when using the random 
paradigm

4. A synchronous paradigm; relies on the natural compartmentalization of a problem and 
organizes team members to work on pieces of the problem with little active communication 
amonjg themselves

Human Aspects of 
Software Engineering



References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th ed. 
McGraw-Hill Companies.Inc, Americas, New York.  ISBN : 978 1 259 253157.

• Manifesto for Agile Software Development, http://agilemanifesto.org/

• Multimedia : Video Water Fall, V model, 
http://www.youtube.com/watch?v=KaPC0gsEQ68

• Software Engineering Incremental Model, 
http://www.youtube.com/watch?v=9cBkihYP1rY

• The Strengths and Weaknesses of Extreme Programming, 
http://www.youtube.com/watch?v=LkhLZ7_KZ5w

• Agile project management tutorial: What is agile project managemen,  
http://www.youtube.com/watch?v=MJR-EgHTA4E

http://www.youtube.com/watch?v=KaPC0gsEQ68
http://www.youtube.com/watch?v=9cBkihYP1rY
http://www.youtube.com/watch?v=LkhLZ7_KZ5w
http://www.youtube.com/watch?v=MJR-EgHTA4E


Q & A





Software Engineering
Topic 3

Requirement Modelling



Acknowledgement

These slides have been adapted from 
Pressman, R.S. (2015). Software Engineering : A 
Practioner's Approach. 8th ed. McGraw-Hill 
Companies.Inc, Americas, New York.  ISBN : 978 1 
259 253157. Chapter 9, 10, 11 and 12



Learning Objectives

LO 2 :     Explain the software engineering 
practices and business environment



Contents

• Requirement Analysis

• Eliciting Requirements

• Developing Use Case

• Negotiating Requirements

• Validating Requirements



REQUIREMENT ENGINEERING



Requirement Engineering

• Inception—ask a set of questions that establish …
• basic understanding of the problem
• the people who want a solution
• the nature of the solution that is desired, and 
• the effectiveness of preliminary communication and collaboration between 

the customer and the developer

• Elicitation—elicit requirements from all stakeholders

• Elaboration—create an analysis model that identifies data, function and 
behavioral requirements

• Negotiation—agree on a deliverable system that is realistic for developers and 
customers



Requirement Engineering

• Specification—can be any one (or more) of the following:

– A written document

– A set of models

– A formal mathematical

– A collection of user scenarios (use-cases)

– A prototype

• Validation—a review mechanism that looks for

– errors in content or interpretation

– areas where clarification may be required

– missing information

– inconsistencies (a major problem when large products or systems are engineered)

– conflicting or unrealistic (unachievable) requirements. 

• Requirements management



Requirement Engineering

Inception

• Identify stakeholders

– “who else do you think I should talk to?”

• Recognize multiple points of view

• Work toward collaboration

• The first questions

– Who is behind the request for this work?

– Who will use the solution?

– What will be the economic benefit of a successful 
solution

– Is there another source for the solution that you 
need?



Requirement Engineering

Eliciting Requirements

• Meetings are conducted and attended by both software engineers and customers

• Rules for preparation and participation are established

• An agenda is suggested 

• A "facilitator" (can be a customer, a developer, or an outsider) controls the meeting

• A "definition mechanism" (can be work sheets, flip charts, or wall stickers or an electronic bulletin 
board, chat room or virtual forum) is used

• The goal is 

– to identify the problem

– propose elements of the solution

– negotiate different approaches, and

– specify a preliminary set of solution requirements



Requirement Engineering

Eliciting Requirements

Use QFD to 

priorit ize

requirem ents

inform ally 

priorit ize

requirem ents

form al priorit izat ion?

Create Use-cases

yes no

El ic i t  requi rem ent s

write scenario

def ine actors

com plete tem plate

draw use-case 

diagram

Conduct  FAST

m eet ings

Make lists of

funct ions,  c lasses

Make lists of

const raints ,  etc.



Requirement Engineering

Quality Function Deployment

• Function deployment determines the “value” (as 

perceived by the customer) of each function required 

of the system

• Information deployment identifies data objects and 

events

• Task deployment examines the behavior of the 

system

• Value analysis determines the relative priority of 

requirements



Requirement Engineering
Elicitation Work Products

• a statement of need and feasibility.

• a bounded statement of scope for the system or product.

• a list of customers, users, and other stakeholders who participated in 
requirements elicitation 

• a description of the system’s technical environment.

• a list of requirements (preferably organized by function) and the domain 
constraints that apply to each.

• a set of usage scenarios that provide insight into the use of the system or product 
under different operating conditions.

• any prototypes developed to better define requirements.



BUILDING THE ANALYSIS MODEL



Building the Analysis Model

Elements of the analysis model :

• Scenario-based elements

– Functional—processing narratives for software functions

– Use-case—descriptions of the interaction between an “actor” and the system

• Class-based elements

– Implied by scenarios

• Behavioral elements

– State diagram

• Flow-oriented elements

– Data flow diagram



Building the Analysis Model

Use-Cases
• A collection of user scenarios that describe the thread of usage of a system

• Each scenario is described from the point-of-view of an “actor”—a person or device that interacts with the software 
in some way

• Each scenario answers the following questions:

– Who is the primary actor, the secondary actor (s)?

– What are the actor’s goals?

– What preconditions should exist before the story begins?

– What main tasks or functions are performed by the actor?

– What extensions might be considered as the story is described?

– What variations in the actor’s interaction are possible?

– What system information will the actor acquire, produce, or change?

– Will the actor have to inform the system about changes in the external environment?

– What information does the actor desire from the system?

– Does the actor wish to be informed about unexpected changes?



Building the Analysis 
Model

Use-Case Diagram

homeowner

Arms/ disarms 

syst em

Accesses syst em 

via Int ernet

Reconf igures  sensors 

and relat ed

syst em f eat ures

Responds t o

alarm event

Encount ers an

error condit ion

syst em 

administ rat or

sensors



Building the Analysis 
Model

Class Diagram

Sensor

name/id 

type 

location 

area 

characteristics 

identify() 

enable() 

disable() 

reconfigure ()

From the SafeHome system …



Building the Analysis 
Model

State Diagram

Reading 

Commands

System status = “ready”

Display msg = “enter cmd”

Display status = steady

Entry/subsystems ready

Do: poll user input panel

Do: read user input

Do: interpret user input

State name

State variables

State activities



Analysis Patterns
Pattern name:  A descriptor that captures the essence of the pattern. 

Intent: Describes what the pattern accomplishes or represents 

Motivation:  A scenario that illustrates how the pattern can be used to address the problem.

Forces and context:  A description of external issues (forces) that can affect how the pattern is used and 

also the external issues that will be resolved when the pattern is applied. 

Solution:  A description of how the pattern is applied to solve the problem with an emphasis on structural 

and behavioral issues.

Consequences:  Addresses what happens when the pattern is applied and what trade-offs exist during its 

application.

Design:  Discusses how the analysis pattern can be achieved through the use of known design patterns.

Known uses:  Examples of uses within actual systems.

Related patterns:  On e or more analysis patterns that are related to the named pattern because (1) it is 

commonly used with the named pattern; (2) it is structurally similar to the named pattern; (3) it is a variation 

of the named pattern.



Negotiating 
Requirements

• Identify the key stakeholders

– These are the people who will be involved in 

the negotiation

• Determine each of the stakeholders “win 

conditions”

– Win conditions are not always obvious

• Negotiate

– Work toward a set of requirements that lead to 

“win-win”



Validating Requirements
• Is each requirement achievable in the technical environment that will 

house the system or product?

• Is each requirement testable, once implemented?

• Does the requirements model properly reflect the information, function 

and behavior of the system to be built.

• Has the requirements model been “partitioned” in a way that exposes 

progressively more detailed information about the system.

• Have requirements patterns been used to simplify the requirements 

model. Have all patterns been properly validated? Are all patterns 

consistent with customer requirements?



Requirement Analysis



REQUIREMENT MODELING



Scenario-Based Modeling

“[Use-cases] are simply an aid to defining what 

exists outside the system (actors) and what 

should be performed by the system (use-cases).” 

Ivar Jacobson

(1) What should we write about?

(2) How much should we write about it?

(3) How detailed should we make our 
description? 

(4) How should we organize the  description? 



Scenario-Based Modeling

Use-Cases

• a scenario that 

describes a “thread of 

usage” for a system

• actors represent roles 

people or devices play 

as the system 

functions

• users can play a 

number of different 

roles for a given 

scenario

homeowner

Access camera 

surveillance via the 

Internet

Conf igure SafeHome 

system parameters

Set  alarm

cameras

SafeHome



Scenario-Based Modeling

Activity Diagram

Supplements the use 

case by providing a 

graphical 

representation of the 

flow of interaction 

within a specific 

scenario

enter password 

and user ID

select  major funct ion

valid passwor ds/ ID

prompt  for reent ry

invalid passwor ds/ ID

input  t r ies r em ain

no input

t r ies r em ain

select  surveillance

ot her  f unct ions 

m ay also be 

select ed

t hum bnail views select  a specif ic cam er a

select  camera icon

prompt  for 

another v iew

select  specif ic 

camera - thumbnails

exit  t his f unct ion
see anot her  cam er a

view camera output  

in labelled window



Swimlane Diagrams

Allows the modeler to 
represent the flow of 
activities described by 
the use-case and at the 
same time indicate 
which actor (if there are 
multiple actors involved 
in a specific use-case) 
or analysis class has 
responsibility for the 
action described by an 
activity rectangle

enter password 

and user ID

select  m ajor funct ion

valid  p asswo r d s/ ID

prom pt  for reent ry

in valid

p asswo r d s/ ID

in p u t  t r ies

r em ain

n o  in p u t

t r ies r em ain

select  surveillance

o t h er  f u n ct io n s 

m ay also  b e 

select ed

t h u m b n ail views select  a sp ecif ic cam er a

select  cam era icon

generate video 

output

select  specif ic  

cam era - thum bnails

exit  t h is

f u n ct io n

see

an o t h er

cam er a

h o m e o w n e r c a m e ra i n t e rf a c e

prom pt  for

another v iew

view cam era output  

in labelled window

Scenario-Based Modeling



Class-Based Modeling

• Class-based modeling represents: 

• objects that the system will manipulate 

• operations (also called methods or services) that will be applied to the 
objects to effect the manipulation 

• relationships (some hierarchical) between the objects

• collaborations that occur between the classes that are defined. 

• The elements of a class-based model include classes and objects, attributes, 
operations, CRC models, collaboration diagrams and packages. 



Identifying Analysis Classes
• Examining the usage scenarios developed as part of the 

requirements model and perform a "grammatical parse" [Abb83] 
• Classes are determined by underlining each noun or noun 

phrase and entering it into a simple table. 
• Synonyms should be noted. 
• If the class (noun) is required to implement a solution, then it 

is part of the solution space; otherwise, if a class is necessary 
only to describe a solution, it is part of the problem space. 

• But what should we look for once all of the nouns have been 
isolated? 

Class-Based Modeling



Manifestations of Analysis Classes
Analysis classes manifest themselves in one of the following ways:
• External entities: (e.g., other systems, devices, people) that produce or consume 

information 
• Things: (e.g, reports, displays, letters, signals) that are part of the information 

domain for the problem
• Occurrences or events: (e.g., a property transfer or the completion of a series of 

robot movements) that occur within the context of system operation
• Roles: (e.g., manager, engineer, salesperson) played by people who interact with 

the system
• Organizational units: (e.g., division, group, team) that are relevant to an 

application
• Places: (e.g., manufacturing floor or loading dock) that establish the context of 

the problem and the overall function
• Structures: (e.g., sensors, four-wheeled vehicles, or computers) that define a 

class of objects or related classes of objects

Class-Based Modeling



Defining Attributes
• Attributes describe a class that has been selected for 

inclusion in the analysis model.
• build two different classes for professional baseball 

players
• For Playing Statistics software: name, position, batting average, 

fielding percentage, years played, and games played might be 
relevant

• For Pension Fund software: average salary, credit toward full 
vesting, pension plan options chosen, mailing address, and the 
like.

Class-Based Modeling



Defining Operations
• Do a grammatical parse of a processing narrative and look at 

the verbs

• Operations can be divided into four broad categories: 

• (1) operations that manipulate data in some way (e.g., 
adding, deleting, reformatting, selecting)

• (2) operations that perform a computation

• (3) operations that inquire about the state of an   object, 
and 

• (4) operations that monitor an object for the occurrence 
of a controlling event.

Class-Based Modeling



CRC Models

• Class-responsibility-collaborator (CRC) modeling [Wir90] 
provides a simple means for identifying and organizing the 
classes that are relevant to system or product 
requirements. Ambler [Amb95] describes CRC modeling in 
the following way:

• A CRC model is really a collection of standard index 
cards that represent classes. The cards are divided into 
three sections. Along the top of the card you write the 
name of the class. In the body of the card you list the 
class responsibilities on the left and the collaborators on 
the right.

Class-Based Modeling



CRC Modeling

Class:

Description:

Responsibili ty: Collaborator:

Class:

Description:

Responsibili ty: Collaborator:

Class:

Description:

Respon sibili ty: Collaborator:

Class: FloorPlan

Description:

Respon sibili ty: Collaborator:

incorporates walls, doors and windows

shows position of video cameras

defines floor plan name/type

manages floor plan positioning

scales floor plan for display

scales floor plan for display

Wall

Camera

Class-Based Modeling



Composite Aggregate Class

Play er

Play erHead Play erArms Play erLegsPlay erBody

Class-Based Modeling



Associations and Dependencies
• Two analysis classes are often related to one another in some 

fashion

• In UML these relationships are called associations

• Associations can be refined by indicating multiplicity (the 
term cardinality is used in data modeling

• In many instances, a client-server relationship exists between 
two analysis classes. 

• In such cases, a client-class depends on the server-class 
in some way and a dependency relationship is established

Class-Based Modeling



WallSegm ent Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

Dependencies

CameraDisplay Window

{password}

<<access>>

Class-Based Modeling

Multiplicity



Analysis Packages
• Various elements of the analysis model (e.g., use-cases, 

analysis classes) are categorized in a manner that packages 
them as a grouping

• The plus sign preceding the analysis class name in each 
package indicates that the classes have public visibility and 
are therefore accessible from other packages.

• Other symbols can precede an element within a package. A 
minus sign indicates that an element is hidden from all other 
packages and a # symbol indicates that an element is 
accessible only to packages contained within a given 
package.

Class-Based Modeling



Analysis Packages

Environment

+Tree

+Landscape

+Road

+Wall

+Bridge

+Building

+VisualEffect

+Scene


Characters

+Player

+Protagonist

+Antagonist

+SupportingRole

RulesOfTheGame

+RulesOfMovement

+ConstraintsOnAction

package name

Class-Based Modeling



Creating A Behavioral 
Modeling

• The behavioral model indicates how software will respond to external events or 
stimuli. To create the model, the analyst must perform the following steps:

• Evaluate all use-cases to fully understand the sequence of interaction within the system.
• Identify events that drive the interaction sequence and understand how these events 

relate to specific objects.

• Create a sequence for each use-case.

• Build a state diagram for the system.

• Review the behavioral model to verify accuracy and consistency.



State Representations
• In the context of behavioral modeling, two different 

characterizations of states must be considered: 

• the state of each class as the system performs its function and

• the state of the system as observed from the outside as the 
system performs its function

• The state of a class takes on both passive and active characteristics 
[CHA93]. 

• A passive state is simply the current status of all of an object’s 
attributes.

• The active state of an object indicates the current status of the 
object as it undergoes a continuing transformation or 
processing. 

Creating A Behavioral 
Modeling



State Diagram for the ControlPanel Class

reading

locked

select ing

password 

ent ered

comparing

password = incorrect  

& numberOfTries < maxTries

password = correct

act ivat ion successful

key  hit

do: validat ePassword

numberOfTries > maxTries

t imer < lockedTime

t imer > lockedTime

Creating A Behavioral 
Modeling



The States of a System
• state—a set of observable circum-stances that characterizes the behavior of a system 

at a given time

• state transition—the movement from one state to another

• event—an occurrence that causes the system to exhibit some predictable form of 
behavior

• action—process that occurs as a consequence of making a transition

Creating A Behavioral 
Modeling



Sequence Diagram

homeowner cont ro l panel sensorssyst em sensors

syst em 

ready

reading

request  lookup
comparing

resu lt

password ent ered

password =  correct

request  act ivat ion

act ivat ion successfu l

locked
num berOfTries  >  m axTries

select ing

t imer > lockedTime
A

A

Figure 8 .2 7   Sequence diagram (part ial)  f or Saf eHome  secur it y f unct ion

act ivat ion  successfu l

Creating A Behavioral 
Modeling



REQUIREMENT MODELING FOR WEB AND MOBILE 
APPS 



Requirements Modeling
for Web and Mobile Apps

• In some WebE situations, analysis and design merge. 
However, an explicit analysis activity occurs when …

• the WebApp to be built is large and/or complex
• the number of stakeholders is large

• the number of Web engineers and other contributors is 
large

• the goals and objectives (determined during 
formulation) for the WebApp will effect the business’ 
bottom line

• the success of the WebApp will have a strong bearing on 
the success of the business

When Do We Perform Analysis?



The Content Model
• Content objects are extracted from use-cases

• examine the scenario description for direct and indirect 
references to content

• Attributes of each content object are identified

• The relationships among content objects and/or the 
hierarchy of content maintained by a WebApp

• Relationships—entity-relationship diagram or UML

• Hierarchy—data tree or UML

Requirements Modeling
for Web and Mobile Apps



Data Tree

Figure 1 8 .3   Dat a t ree for a SafeHom e com ponent

component  

part Number

part Name

part Type

descript ion

price

Market ingDescript ion

Phot ograph

TechDescript ion

Schemat ic

Video

WholesalePrice

Ret ailPr ice

Requirements Modeling
for Web and Mobile Apps



The Interaction Model
• Composed of four elements: 

• use-cases

• sequence diagrams

• state diagrams  

• a user interface prototype

Requirements Modeling
for Web and Mobile Apps



The Functional Model
• The functional model addresses two processing elements of 

the WebApp
• user observable functionality that is delivered by the 

WebApp to end-users
• the operations contained within analysis classes that 

implement behaviors associated with the class. 
• An activity diagram can be used to represent processing flow

Requirements Modeling
for Web and Mobile Apps



The Configuration Model
• Server-side

• Server hardware and operating system environment must 
be specified

• Interoperability considerations on the server-side must 
be considered

• Appropriate interfaces, communication protocols and 
related collaborative information must be specified

• Client-side

• Browser configuration issues must be identified

• Testing requirements should be defined

Requirements Modeling
for Web and Mobile Apps



References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th ed. 
McGraw-Hill Companies.Inc, Americas, New York.  ISBN : 978 1 259 253157 

• UML Specification, https://www.omg.org/spec/UML/About-UML/

• UML 2.0 Tutorial, http://www.youtube.com/watch?v=OkC7HKtiZC0

• Introduction to Model-View-View-Model (MVVM) Pattern, 
http://www.youtube.com/watch?v=pY60lLotZCg

http://www.youtube.com/watch?v=OkC7HKtiZC0
http://www.youtube.com/watch?v=pY60lLotZCg


Q & A





Software Engineering

Topic 4

Design Engineering



Acknowledgement

These slides have been adapted from 
Pressman, R.S. (2015). Software Engineering : A Practioner's  
Approach. 8th ed. McGraw-Hill Companies.Inc, Americas, New York.  
ISBN : 978 1 259 253157. Chapter 12, 13, 14, 15, 16, 17, and 18



Learning Objectives

LO2 : Explain the software engineering
practices and business environment



Contents

• Software Architecture

• Architectural Design

• Component Level Design

• Interface Design

• Design Evaluation Cycle

• Design Patterns

• Architectural Patterns

• WebApps Design

• MobileApps Design



SOFTWARE ARCHITECTURE



Software Architecture

The architecture is not the operational software. 
Rather, it is a representation that enables a 
software engineer to: 

(1) analyze the effectiveness of the design in 
meeting its stated requirements, 

(2) consider architectural alternatives at a stage 
when making design changes is still relatively 
easy, and 

(3) reduce the risks associated with the 
construction of the software.



Software Architecture

• Data-centered architectures

• Data flow architectures

• Call and return architectures

• Object-oriented architectures

• Layered architectures

Architectural Styles
Each style describes a system category that encompasses: (1) a set of components
(e.g., a database, computational modules) that perform a function required by a 
system, (2) a set of connectors that enable “communication, coordination and 
cooperation” among components, (3) constraints that define how components can be 
integrated to form the system, and (4) semantic models that enable a designer to 
understand the overall properties of a system by analyzing the known properties of its 
constituent parts. 



Software Architecture

Data Flow 

Architecture

Data Centered 

Architecture



Software Architecture

Layered 

Architecture

Call and Return 

Architecture



ARCHITECTURAL DESIGN



Architectural Design

• The software must be placed into context

• the design should define the external entities (other systems, 
devices, people) that the software interacts with and the nature of 
the interaction

• A set of architectural archetypes should be identified

• An archetype is an abstraction (similar to a class) that represents 
one element of system behavior

• The designer specifies the structure of the system by defining and 
refining software components that implement each archetype



Architectural Design

Architectural Context

target sy stem: 

Security  Function
uses

uses peershomeowner

Saf ehome 

Product
Internet -based 

sy stem

surv eillance 

f unct ion

sensors

control 

panel

sensors

uses



Architectural Design

Archetypes

Figure 10.7  UML relat ionships for SafeHome security funct ion archetypes 

(adapted f rom [BOS00] )

Cont roller

Node

communicates with

Detector Indicator



Architectural Design

Component Structure

SafeHome 

Execut ive

Ext ernal 

Communicat ion 

Management

GUI Int ernet  

Int erface

Funct ion 

select ion

Securit y Surveillance Home 

management

Cont rol 

panel

processing

det ect or 

management

alarm 

processing



Architectural Design

Refined Component Structure

sensor
sensor

sensor
sensor

sensor
sensor
sensor

sensor

Ext ernal 

Communicat ion 

Management

GUI Internet 

Interface

Security

Cont ro l 

pane l

processing

det ect or 

m anagem ent

alarm  

processing

Key pad 

processing

CP d isp lay  

funct ions

scheduler

sensor
sensor
sensor
sensor

phone 

com m unicat ion

alarm  

SafeHome 

Execut ive



COMPONEN LEVEL DESIGN



Component Level Design

• OMG Unified Modeling Language Specification [OMG01] 
defines a component as 

• “… a modular, deployable, and replaceable part of a 
system that encapsulates implementation and exposes a 
set of interfaces.”

• OO view: a component contains a set of collaborating 
classes

• Conventional view: a component contains processing logic, 
the internal data structures that are required to implement 
the processing logic, and an interface that enables the 
component to be invoked and data to be passed to it.



Component Level Design

OO Component

Prin t Job

c om put eJob

in i t ia t eJob

number Of Pages 

number Of Sides 

paper Type 

  paper Weight  

  paper Size 

  paper Color  

magnif icat ion 

color Requir ement s 

pr oduct ionFeat ur es 

  collat ionOpt ions 

  bindingOpt ions 

  cover St ock 

  bleed 

  pr ior it y 

t ot alJobCost  

WOnumber  

PrintJob

comput ePageCost ( )  

comput ePaper Cost ( )  

comput ePr odCost ( )  

comput eTot alJobCost ( )  

buildWor kOr der ( )  

checkPr ior it y ( )  

passJobt o  Pr oduct ion( )  

elaborated design c lass
< < in t er f ace> >  

co m p u t eJo b

comput ePageCost ( )  

comput ePaper Cost ( )  

comput ePr odCost ( )  

comput eTot alJobCost ( )

< < in t er f ace> >  

in it iat eJo b

buildWor kOr der ( )  

checkPr ior it y ( )  

passJobt o  Pr oduct ion( )

design c om ponent

num berOf Pages 

num berOf Sides 

paperTy pe 

m agni f ic at ion  

produc t ionFeat ures

Print Job

c om put eJobCost( )  

passJobt oPrin t er( )  

analy sis c lass



Component Level Design

Conventional Component

ComputePageCost

design component

accessCostsDB

getJobData

elaborated module

PageCost

in:  job size 
in:  color=1, 2 , 3, 4 

in:  pageSize  = A, B, C, B 
out :  BPC 

out :  SF 

in: numberPages 
in: numberDocs 

in: sides= 1, 2 
in: color=1, 2, 3, 4  

in: page size = A, B, C, B 
out : page cost  

 job size ( JS)  = 

   num berPages *  num berDocs;

lookup base page cost  ( BPC)  --> 

   accessCost sDB  ( JS, co lor) ; 

lookup size fact or ( SF)  --> 

   accessCost DB  ( JS, color, size)  

job com plexit y  fact or ( JCF)  = 

   1  + [ ( sides-1) * sideCost  + SF]

pagecost  = BPC *  JCF 

get JobDat a ( num berPages, num berDocs, 

sides, co lor, pageSize, pageCost )

accessCost sDB (jobSize, co lor, pageSize, 

BPC, SF)

com put ePageCost( )



Component Level Design

• Conventional view: 
• the “single-mindedness” of a module

• OO view: 
• cohesion implies that a component or class encapsulates only 

attributes and operations that are closely related to one another 
and to the class or component itself

• Levels of cohesion
• Functional
• Layer
• Communicational
• Sequential
• Procedural
• Temporal
• utility

Cohesion



Component Level Design

Coupling
• Conventional view: 

– The degree to which a component is connected to other components and 
to the external world

• OO view:

– a qualitative measure of the degree to which classes are connected to one 
another

• Level of coupling

– Content

– Common

– Control

– Stamp

– Data

– Routine call

– Type use

– Inclusion or import

– External



Component Level Design

• WebApp component is 
• (1) a well-defined cohesive function that manipulates 

content or provides computational or data processing for 
an end-user, or 

• (2) a cohesive package of content and functionality that 
provides end-user with some required capability. 

• Therefore, component-level design for WebApps often 
incorporates elements of content design and functional 
design.

Component Design for WebApps



Component Level Design

Component-Based Development

• When faced with the possibility of reuse, the software team 
asks:

– Are commercial off-the-shelf (COTS) components available 
to implement the requirement?

– Are internally-developed reusable components available to 
implement the requirement?

– Are the interfaces for available components compatible 
within the architecture of the system to be built?

• At the same time, they are faced with the following 
impediments to reuse ...



Component Level Design

• User model — a profile of all end users of the system

• Design model — a design realization of the user model

• Mental model (system perception) — the user’s mental 
image of what the interface is

• Implementation model — the interface “look and feel” 
coupled with supporting information that describe 
interface syntax and semantics

User Interface Design Models



INTERFACE DESIGN



Interface Design

User Interface Design Process



Interface Design

• Interface analysis means understanding 

(1) the people (end-users) who will interact with the 
system through the interface;

(2) the tasks that end-users must perform to do their 
work, 

(3) the content that is presented as part of the interface

(4) the environment in which these tasks will be 
conducted.

Interface Analysis



Interface Design

• Answers the following questions …
• What work will the user perform in specific circumstances?
• What tasks and subtasks will be performed as the user does the 

work?
• What specific problem domain objects will the user manipulate as 

work is performed?
• What is the sequence of work tasks—the workflow?
• What is the hierarchy of tasks?

• Use-cases define basic interaction

• Task elaboration refines interactive tasks

• Object elaboration identifies interface objects (classes)

• Workflow analysis defines how a work process is 
completed when several people (and roles) are involved 

Task Analysis and Modeling



Interface Design

Swimlane Diagram
pat ient pharmacist physician

r e q u e st s t h at  a 

p r e scr ip t io n  b e  r e f ille d

no ref ills 

remaining

ch e cks p at ie n t  

r e co r d s

d e t e r m in e s st at u s o f  

p r e scr ip t io n

ref ills 

remaining

ref ill not  

allowed

approves ref ill 

e v alu at e s alt e r n at iv e  

m e d icat io n

none

r e ce iv e s r e q u e st  t o  

co n t act  p h y sician

alternat ive 

available

ch e cks in v e n t o r y  f o r  

r e f ill o r  alt e r n at iv e

out  of  stockr e ce iv e s o u t  o f  st o ck 

n o t if icat io n

r e ce iv e s t im e / d at e  

t o  p ick u p

in stock

p icks u p  

p r e scr ip t io n

f ills 

p r e scr ip t io n

Figure 12.2   Swimlane d iagram for prescrip t ion  refill funct ion



Interface Design

• Using information developed during interface analysis, 
define interface objects and actions (operations).

• Define events (user actions) that will cause the state of the 
user interface to change. Model this behavior.

• Depict each interface state as it will actually look to the 
end-user.

• Indicate how the user interprets the state of the system 
from information provided through the interface.

Interface Design Steps



Interface Design

Preliminary screen layout



WEB AND MOBILE INTERFACE DESIGN



WebApp and Mobile
Interface Design

• Anticipation—A WebApp should be designed so that it anticipates 
the use’s next move.

• Communication—The interface should communicate the status of 
any activity initiated by the user

• Consistency—The use of navigation controls, menus, icons, and 
aesthetics (e.g., color, shape, layout)

• Controlled autonomy—The interface should facilitate user 
movement throughout the WebApp, but it should do so in a 
manner that enforces navigation conventions that have been 
established for the application.

• Efficiency—The design of the WebApp and its interface should 
optimize the user’s work efficiency, not the efficiency of the Web 
engineer who designs and builds it or the client-server 
environment that executes it.

Interface Design Principles - I



WebApp and Mobile
Interface Design

• Focus—The WebApp interface (and the content it presents) should 
stay focused on the user task(s) at hand.

• Fitt’s Law—“The time to acquire a target is a function of the 
distance to and size of the target.”

• Human interface objects—A vast library of reusable human 
interface objects has been developed for WebApps.

• Latency reduction—The WebApp should use multi-tasking in a way 
that lets the user proceed with work as if the operation has been 
completed. 

• Learnability— A WebApp interface should be designed to minimize 
learning time, and once learned, to minimize relearning required 
when the WebApp is revisited.

Interface Design Principles - II



WebApp and Mobile
Interface Design

• Maintain work product integrity—A work product (e.g., a form 
completed by the user, a user specified list) must be automatically 
saved so that it will not be lost if an error occurs.

• Readability—All information presented through the interface 
should be readable by young and old.

• Track state—When appropriate, the state of the user interaction 
should be tracked and stored so that a user can logoff and return 
later to pick up where she left off.

• Visible navigation—A well-designed WebApp interface provides 
“the illusion that users are in the same place, with the work 
brought to them.”

Interface Design Principles-III



WebApp and Mobile
Interface Design

• Review information contained in the analysis model and refine 
as required.

• Develop a rough sketch of the WebApp interface layout.

• Map user objectives into specific interface actions. 

• Define a set of user tasks that are associated with each action.

• Storyboard screen images for each interface action.

• Refine interface layout and storyboards using input from 
aesthetic design.

Interface Design Workflow-I



WebApp and Mobile Interface Design

• Identify user interface objects that are required to implement the interface. 

• Develop a procedural representation of the user’s interaction with the 
interface. 

• Develop a behavioral representation of the interface.

• Describe the interface layout for each state. 

• Refine and review the interface design model.

Interface Design Workflow-II



WebApp and Mobile Interface Design
The interface design evaluation cycle

object ive #1

object ive #2

object ive #3

object ive #4

object ive #5

object ive #n

List  of  user object ives

Home page text copy

graphic

graphic, logo, and company  name

Navigation 

menu

Menu bar 

major functions



DESIGN PATTERNS



Design Patterns

Effective Patterns

• Coplien [Cop05] characterizes an effective design pattern in the following way:

• It solves a problem: Patterns capture solutions, not just abstract principles or strategies.

• It is a proven concept: Patterns capture solutions with a track record, not theories or 
speculation.

• The solution isn't obvious: Many problem-solving techniques (such as software design 
paradigms or methods) try to derive solutions from first principles. The best patterns generate a 
solution to a problem indirectly--a necessary approach for the most difficult problems of design.

• It describes a relationship: Patterns don't just describe modules, but describe deeper system 
structures and mechanisms.

• The pattern has a significant human component (minimize human intervention). All software 
serves human comfort or quality of life; the best patterns explicitly appeal to aesthetics and 
utility.



Design Patterns
Generative Patterns

• Generative patterns describe an important and repeatable aspect of a 
system and then provide us with a way to build that aspect within a system 
of forces that are unique to a given context. 

• A collection of generative design patterns could be used to “generate” an 
application or computer-based system whose architecture enables it to 
adapt to change. 



Design Patterns

Describing a Pattern
• Pattern name—describes the essence of the pattern in a short but expressive name

• Problem—describes the problem that the pattern addresses

• Motivation—provides an example of the problem

• Context—describes the environment in which the problem resides including application domain

• Forces—lists the system of forces that affect the manner in which the problem must be solved; includes a
discussion of limitation and constraints that must be considered

• Solution—provides a detailed description of the solution proposed for the problem

• Intent—describes the pattern and what it does

• Collaborations—describes how other patterns contribute to the solution

• Consequences—describes the potential trade-offs that must be considered when the pattern is implemented
and the consequences of using the pattern

• Implementation—identifies special issues that should be considered when implementing the pattern

• Known uses—provides examples of actual uses of the design pattern in real applications

• Related patterns—cross-references related design patterns



Design Patterns

Pattern-Based Design

• A software designer begins with a requirements model (either explicit or
implied) that presents an abstract representation of the system.

• The requirements model describes the problem set, establishes the
context, and identifies the system of forces that hold sway.

• Then …



Design Patterns

Pattern-based design in context



Design Patterns

Pattern Organizing Table



Architectural Patterns

• Example: every house (and every architectural style for houses) employs a
Kitchen pattern.

• The Kitchen pattern and patterns it collaborates with address problems
associated with the storage and preparation of food, the tools required to
accomplish these tasks, and rules for placement of these tools relative to
workflow in the room.

• In addition, the pattern might address problems associated with counter tops,
lighting, wall switches, a central island, flooring, and so on.

• Obviously, there is more than a single design for a kitchen, often dictated by the
context and system of forces. But every design can be conceived within the
context of the ‘solution’ suggested by the Kitchen pattern.



WebApps Design

Design & WebApp Quality

• Security

• Rebuff external attacks

• Exclude unauthorized access

• Ensure the privacy of users/customers

• Availability

• the measure of the percentage of time that a WebApp is available for use

• Scalability

• Can the WebApp and the systems with which it is interfaced handle significant 
variation in user or transaction volume

• Time to Market



WEBAPPS DESIGN



WebApps Design

Quality Dimensions for End-Users

• Time

• How much has a Web site changed since the last upgrade? 

• How do you highlight the parts that have changed? 

• Structural

• How well do all of the parts of the Web site hold together. 

• Are all links inside and outside the Web site working? 

• Do all of the images work? 

• Are there parts of the Web site that are not connected? 

• Content

• Does the content of critical pages match what is supposed to be there?

• Do key phrases exist continually in highly-changeable pages? 

• Do critical pages maintain quality content from version to version? 

• What about dynamically generated HTML pages? 



WebApps Design

Quality Dimensions for End-Users

• Accuracy and Consistency

• Are today's copies of the pages downloaded the same as yesterday's? Close enough? 

• Is the data presented accurate enough? How do you know? 

• Response Time and Latency

• Does the Web site server respond to a browser request within certain parameters? 

• In an E-commerce context, how is the end to end response time after a SUBMIT? 

• Are there parts of a site that are so slow the user declines to continue working on it? 

• Performance

• Is the Browser-Web-Web site-Web-Browser connection quick enough? 

• How does the performance vary by time of day, by load and usage? 

• Is performance adequate for E-commerce applications? 



WebApps Design

Design Pyramid for WebApps 

Interf ace 

design

Aesthet ic design

Content design

Nav igation design

Architecture design

Component design

user

technology



WebApps Design

Design representation of content objects
ProductComponent

partNumber 
partName 

partType 
description 
price

createNewItem ( )  
displayDescription ( )  

display TechSpec 

Sensor Camera ControlPanel SoftFeature

CompDescript ion

Phot ograph

horizont al dimension 

vert ical dimension 

border st yle

Schemat ic

horizont al dimension 

vert ical dimension 

border st yle

Video

horizont al dimension 

vert ical dimension 

border st yle 

audio volume

TechDescript ion

t ext  color 

f ont  st yle 

f ont  size 

line spacing 

t ext  image size 

background color

Market ingDescript ion

t ext  color 

f ont  st yle 

f ont  size 

line spacing 

t ext  image size 

background color

is part  of

1

1

1 1..* 0..1 0..1 1

1



MOBILE APPS DESIGN



MobileApp Design

• Like all computing devices, mobile platforms are differentiated by the 
software they deliver – a combination of operating system (e.g., Android 
or iOS) and a small subset of the hundreds of thousands of MobileApps 
that provide a very wide range of functionality.

• New tools allow individuals with little formal training to create and sell 
apps alongside other apps developed by large teams of software 
developers.

Development Considerations



MobileApp Design

• Multiple hardware and software platforms

• Many development frameworks and programming languages

• Many app store with different rules and tools

• Very short development cycles

• UI limitations and complexities of interaction with sensors and cameras

• Effective use of context

• Power management

• Security and privacy models and policies

• Computational and storage limitations

• Application that depend on external services

• Testing complexity

Technical Considerations



MobileApp Design 

• Identify your audience

• Design for context of use

• There is a fine line between simlicity and laziness

• Use the platform as an advantage

• Make scrollbars and selection highlighting more salient

• Increase discoverability of advanced functionality

• Use clear and consistent labels

• Clever icons should never be developed at the expense of user under 
standing 

• Support user expectations for personalization

• Long scrolling forms trump multiple screens on mobile device

Best Practices 



References

• Pressman, R.S. (2015). Software Engineering : A Practioner's  Approach. 8th ed. McGraw-
Hill Companies.Inc, Americas, New York.  ISBN : 978 1 259 253157.

• Guide to the Software Engineering Body of Knowledge, SWEBOK, 
https://www.computer.org/education/bodies-of-knowledge/software-engineering

• UML Specification, https://www.omg.org/spec/UML/About-UML/

• Introduction to Software Architecture, http://www.youtube.com/watch?v=x30DcBfCJRI

• Component-based game engine, http://www.youtube.com/watch?v=_K4Mc3t9Rtc

• software design pattern, http://www.youtube.com/watch?v=ehGl_V61WJw

https://www.computer.org/education/bodies-of-knowledge/software-engineering
http://www.youtube.com/watch?v=x30DcBfCJRI
http://www.youtube.com/watch?v=_K4Mc3t9Rtc
http://www.youtube.com/watch?v=ehGl_V61WJw


Q & A





Software Engineering

Topic 5

Software Quality Assurance



Acknowledgement

These slides have been adapted from 

Pressman, R.S. (2015). Software 

Engineering : A Practioner's  Approach. 8th

ed. McGraw-Hill Companies.Inc, Americas, 

New York.  ISBN : 978 1 259 253157. 

Chapter 19 and 20



Learning Objectives

LO 3 : Demonstrate the quality 

assurances and the potential 

showcase business project



Contents

• Software Quality

• The Software Quality Dilemma

• Achieving Software Quality

• Review Techniques

• Defect Amplification

• Review Metrics

• Informal Reviews

• Formal Technical Reviews

• Comment on Quality

• Statistical SQA

• Software Reliability



SOFTWARE QUALITY



Software Quality

In 2005, ComputerWorld [Hil05] lamented that 

“bad software plagues nearly every organization that uses 

computers, causing lost work hours during computer downtime, 

lost or corrupted data, missed sales opportunities, high IT support 

and maintenance costs, and low customer satisfaction. 

A year later, InfoWorld [Fos06] wrote about the

“the sorry state of software quality” reporting that the quality 

problem had not gotten any better.

Today, software quality remains an issue, but who is to blame? 
Customers blame developers, arguing that sloppy practices lead to 

low-quality software. 

Developers blame customers (and other stakeholders), arguing that 

irrational delivery dates and a continuing stream of changes force 

them to deliver software before it has been fully validated.



Software Quality

• The American Heritage Dictionary defines quality as 

– “a characteristic or attribute of something.”  

• For software, two kinds of quality may be encountered: 

– Quality of design encompasses requirements, 

specifications, and the design of the system. 

– Quality of conformance is an issue focused primarily 

on implementation.

– User satisfaction = compliant product + good quality + 

delivery within budget and schedule

Quality



Software Quality

Quality - A Pragmatic View

• The transcendental view argues (like Persig) that quality is 
something that you immediately recognize, but cannot explicitly 
define. 

• The user view sees quality in terms of an end-user’s specific goals. 
If a product meets those goals, it exhibits quality. 

• The manufacturer’s view defines quality in terms of the original 
specification of the product. If the product conforms to the spec, it 
exhibits quality. 

• The product view suggests that quality can be tied to inherent 
characteristics (e.g., functions and features) of a product. 

• Finally, the value-based view measures quality based on how much 
a customer is willing to pay for a product. In reality, quality 
encompasses all of these views and more.



Software Quality

Software Quality

• Software quality can be defined as: 

– An effective software process applied in a manner 

that creates a useful product that provides 

measurable value for those who produce it and those 

who use it.

• This definition has been adapted from [Bes04] and 

replaces a more manufacturing-oriented view presented 

in earlier editions of this book.



Software Quality

Effective Software Process

• An effective software process establishes the infrastructure that 

supports any effort at building a high quality software product. 

• The management aspects of process create the checks and 

balances that help avoid project chaos—a key contributor to poor 

quality.

• Software engineering practices allow the developer to analyze the 

problem and design a solid solution—both critical to building high 

quality software. 

• Finally, umbrella activities such as change management and 

technical reviews have as much to do with quality as any other 

part of software engineering practice.



Software Quality

Useful Product

• A useful product delivers the content, functions, and 

features that the end-user desires

• But as important, it delivers these assets in a reliable, 

error free way. 

• A useful product always satisfies those requirements 

that have been explicitly stated by stakeholders. 

• In addition, it satisfies a set of implicit requirements 

(e.g., ease of use) that are expected of all high quality 

software.



Software Quality

Adding Value

• By adding value for both the producer and user of a software product, 
high quality software provides benefits for the software organization and 
the end-user community. 

• The software organization gains added value because high quality 
software requires less maintenance effort, fewer bug fixes, and reduced 
customer support. 

• The user community gains added value because the application provides 
a useful capability in a way that expedites some business process. 

• The end result is: 

– (1) greater software product revenue, 

– (2) better profitability when an application supports a business 
process, and/or 

– (3) improved availability of information that is crucial for the 
business.



Software Quality

Quality Dimensions

• David Garvin [Gar87]:

– Performance Quality

– Feature quality

– Reliability

– Conformance

– Durability

– Serviceability

– Aesthetics

– Perception



SOFTWARE QUALITY DILEMMA



The Software Quality 
Dilemma

• If you produce a software system that has terrible quality, you lose because no one 
will want to buy it. 

• If on the other hand you spend infinite time, extremely large effort, and huge sums 
of money to build the absolutely perfect piece of software, then it's going to take so 
long to complete and it will be so expensive to produce that you'll be out of 
business anyway. 

• Either you missed the market window, or you simply exhausted all your resources. 

• So people in industry try to get to that magical middle ground where the product is 
good enough not to be rejected right away, such as during evaluation, but also not 
the object of so much perfectionism and so much work that it would take too long or 
cost too much to complete. [Ven03]



The Software Quality 
Dilemma

“Good Enough” Software
• Good enough software delivers high quality functions and features that end-users 

desire, but at the same time it delivers other more obscure or specialized 
functions and features that contain known bugs. 

• Arguments against “good enough.” 
– It is true that “good enough” may work in some application domains and for a few 

major software companies. After all, if a company has a large marketing budget and 
can convince enough people to buy version 1.0, it has succeeded in locking them in. 

– If you work for a small company be wary of this philosophy. If you deliver a “good 
enough” (buggy) product, you risk permanent damage to your company’s reputation. 

– You may never get a chance to deliver version 2.0 because bad buzz may cause your 
sales to plummet and your company to fold. 

– If you work in certain application domains (e.g., real time embedded software, 
application software that is integrated with hardware can be negligent and open your 
company to expensive litigation. 



The Software Quality 
Dilemma

Cost of Quality
• Prevention costs include

– quality planning

– formal technical reviews

– test equipment

– Training

• Internal failure costs include

– rework

– repair

– failure mode analysis

• External failure costs are

– complaint resolution

– product return and replacement

– help line support

– warranty work



The Software Quality 
Dilemma

Cost
• The relative costs to find and repair an error or defect increase 

dramatically as we go from prevention to detection to internal 
failure to external failure costs.



The Software Quality 
Dilemma

Quality and Risk

• “People bet their jobs, their comforts, their safety, their 

entertainment, their decisions, and their very lives on computer 

software. It better be right.” SEPA, Chapter 1

• Example:

– Throughout the month of November, 2000 at a hospital in 

Panama, 28 patients received massive overdoses of gamma 

rays during treatment for a variety of cancers. In the months 

that followed, five of these patients died from radiation 

poisoning and 15 others developed serious complications. What 

caused this tragedy?  A software package, developed by a U.S. 

company, was modified by hospital technicians to compute 

modified doses of radiation for each patient. 



The Software Quality 
Dilemma

Negligence and Liability
• The story is all too common. A governmental or corporate entity hires a major 

software developer or consulting company to analyze requirements and then 
design and construct a software-based “system” to support some major 
activity. 

– The system might support a major corporate function (e.g., pension 
management) or some governmental function (e.g., healthcare 
administration or homeland security).

• Work begins with the best of intentions on both sides, but by the time the 
system is delivered, things have gone bad. 

• The system is late, fails to deliver desired features and functions, is error-
prone, and does not meet with customer approval. 

• Litigation ensues.



The Software Quality Dilemma

Quality and Security

• Gary McGraw comments [Wil05]:  

• “Software security relates entirely and completely to quality. You must think about 

security, reliability, availability, dependability—at the beginning, in the design, 

architecture, test, and coding phases, all through the software life cycle 

[process]. Even people aware of the software security problem have focused on 

late life-cycle stuff. The earlier you find the software problem, the better. And 

there are two kinds of software problems. One is bugs, which are implementation 

problems. The other is software flaws—architectural problems in the design. 

People pay too much attention to bugs and not enough on flaws.”



ACHIEVING SOFTWARE QUALITY



Achieving Software 
Quality

• Critical success factors:

– Software Engineering Methods

– Project Management Techniques

– Quality Control

– Quality Assurance



REVIEW TECHNIQUE



Review Techniques

What Are Reviews?

• a meeting conducted by technical people for technical 
people

• a technical assessment of a work product created 
during the software engineering process

• a software quality assurance mechanism

• a training ground

• Review are not:

– A project summary or progress assessment

– A meeting intended solely to impart information

– A mechanism for political or personal reprisal!



Review Techniques

What Do We Look For?

• Errors and defects

– Error—a quality problem found before the software is released 
to end users

– Defect—a quality problem found only after the software has been 
released to end-users

• We make this distinction because errors and defects have very 
different economic, business, psychological, and human impact

• However, the temporal distinction made between errors and defects 
in this book is not mainstream thinking



Defect Amplification

• A defect amplification model [IBM81] can be used to 
illustrate the generation and detection of errors during the 
design and code generation actions of a software process. 

Errors passed through

Amplified errors 1:x

Newly generated errors

Development step

Errors from

Previous step Errors passed 

To next step

Defects Detection

Percent

Efficiency



Review Metrics

• The total review effort and the total number of errors discovered 

are defined as:

• Ereview = Ep + Ea + Er

• Errtot = Errminor + Errmajor

• Defect density represents the errors found per unit of work 

product reviewed. 

• Defect density = Errtot / WPS

• where …



Review Metrics

Metrics
• Preparation effort, Ep—the effort (in person-hours) required to review 

a work product prior to the actual review meeting

• Assessment effort, Ea— the effort (in person-hours) that is 
expending during the actual review

• Rework effort, Er— the effort (in person-hours) that is dedicated to 
the correction of those errors uncovered during the review

• Work product size, WPS—a measure of the size of the work product 
that has been reviewed (e.g.,  the number of UML models, or the 
number of document pages, or the number of lines of code)

• Minor errors found, Errminor—the number of errors found that can be 
categorized as minor (requiring less than some pre-specified effort 
to correct)

• Major errors found, Errmajor— the number of errors found that can be 
categorized as major (requiring more than some pre-specified effort 
to correct)



Review Metrics

An Example—I

• If past history indicates that

– the average defect density for a requirements model 

is 0.6 errors per page, and a new requirement model 

is 32 pages long, 

– a rough estimate suggests that your software team 

will find about 19 or 20 errors during the review of the 

document. 

– If you find only 6 errors, you’ve done an extremely 

good job in developing the requirements model or

your review approach was not thorough enough.



Review Metrics

An Example—II

• The effort required to correct a minor model error (immediately after the review) was found to 
require 4 person-hours. 

• The effort required for a major requirement error was found to be 18 person-hours. 

• Examining the review data collected, you find that minor errors occur about 6 times more 
frequently than major errors. Therefore, you can estimate that the average effort to find and 
correct a requirements error during review is about 6 person-hours. 

• Requirements related errors uncovered during testing require an average of 45 person-hours to 
find and correct. Using the averages noted, we get:

• Effort saved per error  = Etesting – Ereviews

• 45 – 6  =   30 person-hours/error

• Since 22 errors were found during the review of the requirements model, a saving of about 660 
person-hours of testing effort would be achieved. And that’s just for requirements-related errors.



Review Metrics

Overall

• Effort expended with and without reviews

with reviews



Informal Reviews

• Informal reviews include:

– a simple desk check of a software engineering work product 

with a colleague

– a casual meeting (involving more than 2 people) for the 

purpose of reviewing a work product, or 

– the review-oriented aspects of pair programming

• pair programming encourages continuous review as a work 

product (design or code) is created. 

– The benefit is immediate discovery of errors and better work 

product quality as a consequence.



Formal Technical 
Reviews

• The objectives of an FTR are: 

– to uncover errors in function, logic, or implementation for 

any representation of the software

– to verify that the software under review meets its 

requirements

– to ensure that the software has been represented 

according to predefined standards

– to achieve software that is developed in a uniform 

manner

– to make projects more manageable

• The FTR is actually a class of reviews that includes 

walkthroughs and inspections.



Formal Technical 
Reviews

Conducting the Review
• Review the product, not the producer. 

• Set an agenda and maintain it.

• Limit debate and rebuttal. 

• Enunciate problem areas, but don't attempt to solve every problem 
noted. 

• Take written notes. 

• Limit the number of participants and insist upon advance 
preparation. 

• Develop a checklist for each product that is likely to be reviewed.

• Allocate resources and schedule time for FTRs.

• Conduct meaningful training for all reviewers.

• Review your early reviews. 



References

• Pressman, R.S. (2015). Software Engineering : A 

Practioner's Approach. 8th ed. McGraw-Hill 

Companies.Inc, Americas, New York.  ISBN : 978 1 259 

253157.

• Introduction to software quality assurance,  

http://www.youtube.com/watch?v=5_cTi5xBlYg

• Lean Six Sigma and IEEE standards for better software 

engineering,  

http://www.youtube.com/watch?v=oCkPD5YvWqw

http://www.youtube.com/watch?v=5_cTi5xBlYg
http://www.youtube.com/watch?v=oCkPD5YvWqw


Q & A





Software Engineering

Topic 6

Application Testing and 
Security Engineering



Acknowledgement

These slides have been adapted from 

Pressman, R.S. (2015). Software 

Engineering : A Practioner's  Approach. 8th

ed. McGraw-Hill Companies.Inc, Americas, 

New York.  ISBN 978 1 259 253157. 

Chapter 23, 24, 25, 26, and 27



Learning Objectives

LO 3 : Demonstrate the quality 

assurances and the potential 

showcase business project 



Contents

• Testing Conventional Applications

• Testing Object Oriented Applications

• Testing Web Applications

• Testing Mobile Applications

• Security Engineering



Testing Conventional 
Applications

Software Testing Fundamentals : Testability

• Operability —it operates cleanly

• Observability —the results of each test case are readily observed

• Controllability —the degree to which testing can be automated and 

optimized

• Decomposability —testing can be targeted

• Simplicity —reduce complex architecture and logic to simplify tests

• Stability —few changes are requested during testing

• Understandability —of the design



Testing Conventional 
Applications

What is a “Good” Test?

• A good test has a high probability of finding an 

error

• A good test is not redundant.

• A good test should be “best of breed” 

• A good test should be neither too simple nor 

too complex



Testing Conventional 
Applications

• Any engineered product (and most other things) can be tested in one of 
two ways: 

• Knowing the specified function that a product has been designed to 
perform, tests can be conducted that demonstrate each function is 
fully operational while at the same time searching for errors in each 
function; 

• Knowing the internal workings of a product, tests can be conducted to 
ensure that "all gears mesh," that is, internal operations are performed 
according to specifications and all internal components have been 
adequately exercised.

Internal and External Views of Testing 



Testing Conventional 
Applications

Exhaustive Testing

test per millisecond, it would take 3,170 years to

loop < 20 X



Testing Conventional 
Applications

Selective Testing

loop < 20 X

Selected path



Testing Conventional 
Applications

Software Testing

Methods

Strategies

white-box

methods      

black-box

methods



Testing Conventional 
Applications

White-Box Testing

... our goal is to ensure that all 

statements and conditions have 

been executed at least once ...



Testing Conventional 
Applications

White-Box Testing

logic errors and incorrect assumptions 

are inversely proportional to a path's 

execution probability

we often  believe that a path is not 

likely to be executed;  in fact, reality is 

often counter intuitive

typographical errors are random;  it's 

likely that untested paths will contain 

some 



Testing Conventional 
Applications

First, we compute the cyclomatic 

complexity:

or

number of enclosed areas + 1

In this case, V(G) = 4



Testing Conventional 
Applications

Cyclomatic Complexity

A number of industry studies have indicated 
that the higher V(G), the higher the probability 
or errors.

V(G)

modules

modules in this range are 
more error prone



Testing Conventional 
Applications

Basis Path Testing

Next, we derive the 
independent paths:

Since V(G) = 4,
there are four paths

Path 1:  1,2,3,6,7,8

Path 2:  1,2,3,5,7,8

Path 3:  1,2,4,7,8

Path 4:  1,2,4,7,2,4,...7,8

Finally, we derive test
cases to exercise these  
paths.

1

2

3
4

5 6

7

8



Testing Conventional 
Applications

Basis Path Testing Notes

you don't need a flow chart, 

but the picture will help when 

you trace program paths

count each simple logical test, 

compound tests count as 2 or 

more

basis path testing should be 

applied to critical modules



Testing Conventional 
Applications

Basis Path Testing - Graph Matrices

• A graph matrix is a square matrix whose size (i.e., 
number of rows and columns) is equal to the number of 
nodes on a flow graph

• Each row and column corresponds to an identified node, 
and matrix entries correspond to connections (an edge) 
between nodes. 

• By adding a link weight to each matrix entry, the graph 
matrix can become a powerful tool for evaluating 
program control structure during testing



Testing Conventional 
Applications

Control Structure Testing
• Condition testing — a test case design method 

that exercises the logical conditions contained in 

a program module

• Data flow testing — selects test paths of a 

program according to the locations of definitions 

and uses of variables in the program



Testing Conventional 
Applications

Nested 
Loops

Concatenated

Loops       Unstructured       

Loops

Simple 
loop



Testing Conventional 
Applications

Black-Box Testing

requirements

eventsinput

output



Testing Conventional 
Applications

Black-Box Testing
• How is functional validity tested?

• How is system behavior and performance tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundaries of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system 
operation?



Testing Conventional 
Applications

Graph-Based Methods

new

file

menu select generates

(generation time  1.0 sec)

document

window

document

tex
t

is represented as

contains

Attributes:

background color: white

text color: default color 
     or preferences

(b)

object
#1

Directed link

(link weight)

object
#2

object

#
3

Undirected link

Parallel links

Node weight
(value

)

(a)

allows editing
of

To understand the objects 

that are modeled in 

software and the 

relationships that connect 

these objects

In this context, we consider 

the term “objects” in the 

broadest possible context. It 

encompasses data objects, 

traditional components 

(modules), and object-

oriented elements of 

computer software.



Testing Conventional 
Applications

Orthogonal Array Testing

• Used when the number of input parameters is small and 

the values that each of the parameters may take are clearly 

bounded

One input  item at a t ime L9 orthogonal array

XY

Z

X
Y

Z



Testing Object 
Oriented Application

• To adequately test OO systems, three things 

must be done:

– the definition of testing must be broadened 

to include error discovery techniques applied 

to object-oriented analysis and design 

models

– the strategy for unit and integration testing 

must change significantly, and 

– the design of test cases must account for the 

unique characteristics of OO software.



Testing Object 
Oriented Application

‘Testing’ OO Models

• The review of OO analysis and design models is especially 

useful because the same semantic constructs (e.g., classes, 

attributes, operations, messages) appear at the analysis, 

design, and code level

• Therefore, a problem in the definition of class attributes that 

is uncovered during analysis will circumvent side affects that 

might occur if the problem were not discovered until design 

or code (or even the next iteration of analysis). 



Testing Object Oriented 
Application

Correctness of OO Models
• During analysis and design, semantic correctness can be asesssed 

based on the model’s conformance to the real world problem domain. 

• If the model accurately reflects the real world (to a level of detail that is 
appropriate to the stage of development at which the model is reviewed) 
then it is semantically correct. 

• To determine whether the model does, in fact, reflect real world 
requirements, it should be presented to problem domain experts who 
will examine the class definitions and hierarchy for omissions and 
ambiguity. 

• Class relationships (instance connections) are evaluated to determine 
whether they accurately reflect real-world object connections.



Testing Object Oriented 
Application

Class Model Consistency

• Revisit the CRC model and the object-relationship model.

• Inspect the description of each CRC index card to determine if a delegated 
responsibility is part of the collaborator’s definition.

• Invert the connection to ensure that each collaborator that is asked for service is 
receiving requests from a reasonable source.

• Using the inverted connections examined in the preceding step, determine 
whether other classes might be required or whether responsibilities are properly 
grouped among the classes.

• Determine whether widely requested responsibilities might be combined into a 
single responsibility. 



Testing Object Oriented 
Application

OO Testing Strategies

• Unit testing

– the concept of the unit changes

– the smallest testable unit is the encapsulated class

– a single operation can no longer be tested in isolation (the conventional view of unit 
testing) but rather, as part of a class 

• Integration Testing

– Thread-based testing integrates the set of classes required to respond to one input or 
event for the system

– Use-based testing begins the construction of the system by testing those classes 
(called independent classes) that use very few (if any) of server classes. After the 
independent classes are tested, the next layer of classes, called dependent classes

– Cluster testing defines a cluster of collaborating classes (determined by examining the 
CRC and object-relationship model) is exercised by designing test cases that attempt to 
uncover errors in the collaborations. 



Testing Object 
Oriented Application

OOT Methods
Berard [Ber93] proposes the following approach:

1. Each test case should be uniquely identified and should be explicitly 

associated with the class to be tested

2. The purpose of the test should be stated.

3. A list of testing steps should be developed for each test and should 

contain:

a. a list of specified states for the object that is to be tested

b. a list of messages and operations that will be exercised as a on 

sequence  of  the test

c. a list of exceptions that may occur as the object is tested

d. a list of external conditions (i.e., changes in the environment   

external to the software that must exist in order to properly conduct 

the test)

e. supplementary information that will aid in understanding or 

implementing the test.



Testing Object Oriented 
Application

Testing Methods

• Fault-based testing

– The tester looks for plausible faults (i.e., aspects of the implementation of 

the system that may result in defects). To determine whether these faults 

exist, test cases are designed to exercise the design or code. 

• Class Testing and the Class Hierarchy

– Inheritance does not obviate the need for thorough testing of all derived 

classes. In fact, it can actually complicate the testing process.

• Scenario-Based Test Design

– Scenario-based testing concentrates on what the user does, not what the 

product does. This means capturing the tasks (via use-cases) that the user 

has to perform, then applying them and their variants as tests.



Testing Object 
Oriented Application

OOT Methods: Random Testing

• Random testing

– identify operations applicable to a class

– define constraints on their use

– identify a minimum test sequence

• an operation sequence that defines the minimum 

life history of the class (object)

– generate a variety of random (but valid) test 

sequences

• exercise other (more complex) class instance life 

histories



Testing Object 
Oriented Application

OOT Methods: Partition Testing
• Partition Testing

– reduces the number of test cases required to test a class 
in much the same way as equivalence partitioning for 
conventional software

– state-based partitioning

• categorize and test operations based on their ability to 
change the state of a class

– attribute-based partitioning

• categorize and test operations based on the attributes 
that they use

– category-based partitioning

• categorize and test operations based on the generic 
function each performs



Testing Object 
Oriented Application

OOT Methods: Inter-Class Testing

• Inter-class testing

– For each client class, use the list of class operators 
to generate a series of random test sequences. The 
operators will send messages to other server 
classes.

– For each message that is generated, determine the 
collaborator class and the corresponding operator in 
the server object.

– For each operator in the server object (that has been 
invoked by messages sent from the client object), 
determine the messages that it transmits.

– For each of the messages, determine the next level 
of operators that are invoked and incorporate these 
into the test sequence



Testing Object 
Oriented Application

OOT Methods: Behavior Testing

empty

acctopen setup Accnt

set up

acct

deposit
(initial)

working

acct

withdrawal
(final)

dead
acct close

nonworking
acct

deposit

withdraw
balance

credit

accntInfo

Figure 14.3  St at e diagram f or Account  class (adapt ed f rom [ KIR94] )

The tests to be designed 
should achieve all state 
coverage [KIR94]. 

That is, the operation 
sequences should cause 
the account class to 
make transition through 
all allowable states



Testing Web 
Applications

• Content is evaluated at both a syntactic and semantic level.

• syntactic level

• semantic level
• Function is tested for correctness, instability, and general conformance to appropriate implementation standards 

(e.g.,Java or XML language standards). 

• Structure is assessed to ensure that it 

• properly delivers WebApp content and function

• is extensible

• can be supported as new content or functionality is added. 
• Usability is tested to ensure that each category of user 

• is supported by the interface
• can learn and apply all required navigation syntax and semantics

• Navigability is tested to ensure that

• all navigation syntax and semantics are exercised to uncover any navigation errors (e.g., dead links, 
improper links, erroneous links).

Testing Quality Dimensions-I



Testing Web 
Applications

Testing Quality Dimensions-II

• Performance is tested under a variety of operating conditions, 
configurations, and loading to ensure that 

– the system is responsive to user interaction

– the system handles extreme loading without unacceptable 
operational degradation

• Compatibility is tested by executing the WebApp in a variety of different 
host configurations on both the client and server sides. 
– The intent is to find errors that are specific to a unique host 

configuration.

• Interoperability is tested to ensure that the WebApp properly interfaces 
with other applications and/or databases.

• Security is tested by assessing potential vulnerabilities and attempting to 
exploit each. 
– Any successful penetration attempt is deemed a security failure.



Testing Web 
Applications

The Testing Process

Interface 

design

Aesthet ic design

Content  design

Navigat ion design

Architecture design

Component design

user

technology

Co nt ent  

T est ing

Int erf ace 

Test ing

Co mp onent  

Test ing

Navig at ion 

Test ing

Perf o rmance 

T est ing

Conf ig urat io n 

Test ing

Secur it y 

Test ing



Testing Web 
Applications

Content Testing

• Content testing has three important objectives: 

– to uncover syntactic errors (e.g., typos, grammar mistakes) in 

text-based documents, graphical representations, and other 

media

– to uncover semantic errors (i.e., errors in the accuracy or 

completeness of information) in any content object presented 

as navigation occurs, and 

– to find errors in the organization or structure of content that is 

presented to the end-user.



Testing Web 
Applications

• Is the information factually accurate?
• Is the information concise and to the point?

• Is the layout of the content object easy for the user to understand?

• Can information embedded within a content object be found easily?

• Have proper references been provided for all information derived from other sources?

• Is the information presented consistent internally and consistent with information presented in other content 
objects?

• Is the content offensive, misleading, or does it open the door to litigation?

• Does the content infringe on existing copyrights or trademarks?

• Does the content contain internal links that supplement existing content? Are the links correct?

• Does the aesthetic style of the content conflict with the aesthetic style of the interface?

Assessing Content Semantics



Testing Web 
Applications

c lient  layer - user int erface

server layer - WebApp

server layer - dat a t ransform at ion

dat abase layer - dat a access

server layer - dat a m anagem ent

dat abase

HTML script s

user dat a SQL

user dat a

SQLraw dat a

Tests are defined for
each layer

Database Testing



Testing Web Applications

User Interface Testing

• Interface features are tested to ensure that design rules, aesthetics, 

and related visual content is available for the user without error.

• Individual interface mechanisms are tested in a manner that is 

analogous to unit testing.

• Each interface mechanism is tested within the context of a use-case 

or NSU for a specific user category.

• The complete interface is tested against selected use-cases and NSUs 

to uncover errors in the semantics of the interface.

• The interface is tested within a variety of environments (e.g., 

browsers) to ensure that it will be compatible.



Testing Web Applications

Testing Guidelines
• Understand the network and device landscape before testing to identify 

bottlenecks

• Conduct tests in uncontrolled real-world test condition (filed-based testing)

• Select the right automation test tool

• Use the Weighted Device Platform Matrix method to identify the most critical 

hardware/platform combination to test

• Check the end-to-end functional flow in all possible platforms at least once

• Conduct performance testing, GUI testing, and compatibility testing using 

actual devices

• Measure performance only in realistic conditions of wireless and user load 



Testing Web Applications

Testing Strategies
• Developing a MobileApp testing strategy requires an understanding of both software 

testing and the challenges that make mobile devices and their network infrastucture 

unique.

• In addition to a thorough knowledge of conventional software testing  approach, a 

MobileApp tester should have a good understanding of telecommunications 

principles and an awarness of the differences and capabilities of mobile operating 

systems platforms.

• This basic knowledge must be complemented with a thorough understanding of the 

different types of mobile testing  (e.g. MobileApp testing, mobile handset testing, 

mobile website testing), the use of simulators, test automations tools, and remote data 

access services (RDA).



Testing Mobile 
Applications

Criteria Testing Tools and Environments  

• Object identification

• Security

• Devices

• Functionality

• Emulators and plug-ins

• Connectivity



Security Engineering

Analyzing Security Requirements

• An important  part of building secure systems is anticipating 

conditions or threats that may be used to damage system 

resources or render them inaccessible to authorized users.

• This process is called threat analysis.

• Once the system assets, vulnerabilities, and threats have 

been identified, controls can be created to either avoid 

attacks or mitigate their damage.



Security Engineering

Analyzing Security Requirements

• Software security is an essential prerequisite for software 

integrity, availability, reliability, and safety

• It may not possible to create a system that can be defend its 

assets againt all possible threats, and for that reason, it may 

be necessary to encourage users to maintain backup copies 

of critical data, redundant system component, and ensure 

privacy controls are in place



Security Engineering

Security and Privacy in an Online World
• Social Media

• Mobile Applications

• Cloud Computing

• The Internet of Things



Security Engineering

Security Risk Analysis
• Identify assets

• Create an architecture overview

• Decompose the application

• Identify threats

• Documented the threats

• Rate the threats



Case Study

• In some organization, they have a special QA/QC 

department who manage and control the testing 

process. They are responsible for performing the test

• The test can involve the related team and stakeholder 

of the application

• The process will start for creating the test plan

• The User Acceptance Test (UAT) is the minimum test 

to ensure the application can be used in the 

production environment



References

• Pressman, R.S. (2015). Software Engineering : A Practioner's

Approach. 8th ed. McGraw-Hill Companies.Inc, Americas, New York.  ISBN 

: 978 1 259 253157.

• Software Testing,  

http://www.youtube.com/watch?v=caElFKbceP0&list=PLED41984073D

5B532

• Conventional sw testing http://www.testingexcellence.com/conventional-

software-testing-on-an-extreme-programming-team/

• Testing OO SW

http://diwww.epfl.ch/researchlgl/research/ongoing/testing.html

• Web testing

http://www.manageengine.com/products/qengine/web-testing.html

http://www.youtube.com/watch?v=caElFKbceP0&list=PLED41984073D5B532
http://www.testingexcellence.com/conventional-software-testing-on-an-extreme-programming-team/
http://diwww.epfl.ch/researchlgl/research/ongoing/testing.html
http://www.manageengine.com/products/qengine/web-testing.html


Q & A





Software Engineering

Topic 7

Software Configuration Management



Acknowledgement

These slides have been adapted from 

Pressman, R.S. (2015). Software 

Engineering : A Practioner's  Approach.

8th ed. McGraw-Hill Companies.Inc, 

Americas, New York.  ISBN : 978 1 259 

253157. Chapter 23, 24, 25, 26 and 27



Learning Objectives

LO  4  : Analyze the software project 

management and the proposed potential 

business project



Contents

• The Software Configuration

• SCM Repository

• The SCM Process

• Configuration Management for Web and Mobile 
Apps



The Software 
Configuration

programs documents

data
The pieces



The Software 
Configuration

Baselines

• The IEEE (IEEE Std. No. 610.12-1990) defines a baseline as:

– A specification or product that has been formally reviewed and 
agreed upon, that thereafter serves as the basis for further 
development, and that can be changed only through formal 
change control procedures.

• a baseline is a milestone in the development of software that is 
marked by the delivery of one or more software configuration items 
and the approval of these SCIs that is obtained through a formal 
technical review



The Software 
Configuration

Baselines
SCIs

SCIs

modified

Software

engineering

tasks

Formal

technical

reviews
SCIs

approved

SCIs

extracted

SCM

controls

SCIs

stored

Project database

System Specification

Software Requirements
Design Specification

Source Code
Test Plans/Procedures/Data

Operational System

BASELINES:



The Software 
Configuration

Software Configuration Objects

Design specification

data design

architectural design

module design

interface design

Component N

interface description

algorithm description

PDL

Data model

Test specification

test plan

test procedure

test cases

Source code



SCM Repository

• The SCM repository is the set of mechanisms and 
data structures that allow a software team to manage 
change in an effective manner

• The repository performs or precipitates the following 
functions [For89]:

– Data integrity

– Information sharing

– Tool integration

– Data integration

– Methodology enforcement

– Document standardization



The Software 
Configuration

Repository Content

Business 

Cont ent

Model 

Cont ent

V&V 

Cont ent

Project  

Management  

Cont ent

Const ruct ion 

Cont ent

Document s

business ru les 

business funct ions 

organizat ion st ruct ure 

in form at ion arch it ect ure

pro ject  est im at es 

pro ject  schedule 

SCM requirem ent s 

  change request s 

  change report s 

SQA requirem ent s 

pro ject  report s/ audit  report s 

pro ject  m et rics

Pro ject  Plan 

SCM/ SQA Plan 

Sy st em  Spec 

Requirem ent s Spec 

Design Docum ent  

Test  Plan and Procedure 

Support  docum ent s 

User m anual

use-cases 

analy sis m odel 

  scenario-based d iagram s 

  flow-orient ed d iagram s 

  class-based d iagram s 

  behav ioral d iagram s 

design m odel 

  arch it ect ural d iagram s 

  in t erface d iagram s 

  com ponent -lev el d iagram s 

t echnical m et rics

source code 

object  code 

sy st em  build  inst ruct ions 

t est  cases 

t est  script s 

t est  result s 

qualit y  m et rics



The Software Configuration

Repository Features
• Versioning. 

– saves all of these versions to enable effective management of product releases and to permit developers to go 
back to previous versions

• Dependency tracking and change management. 

– The repository manages a wide variety of relationships among the data elements stored in it. 

• Requirements tracing.

– Provides the ability to track all the design and construction components and deliverables that result from a 
specific requirement specification

• Configuration management. 

– Keeps track of a series of configurations representing specific project milestones or production releases. Version 
management provides the needed versions, and link management keeps track of interdependencies. 

• Audit trails. 

– establishes additional information about when, why, and by whom changes are made. 



The Software Configuration

SCM Elements

• Component elements—a set of tools coupled within a file management system (e.g., a 
database) that enables access to and management of each software configuration item. 

• Process elements—a collection of procedures and tasks that define an effective approach 
to change management (and related activities) for all constituencies involved in the 
management, engineering and use of computer software.

• Construction elements—a set of tools that automate the construction of software by 
ensuring that the proper set of validated components (i.e., the correct version) have been 
assembled.

• Human elements—to implement effective SCM, the software team uses a set of tools and 
process features (encompassing other CM elements) 



The SCM Process

identification

change control

version control

configuration auditing

reporting

SCIs

Software 

Vm.n



The SCM Process

Change Control

STOP



The SCM Process

Change Control Process—I

Change request from user

Developer evaluates

Change report is generated

Change control authority decides

Request is queued for action

Change request is denied

User is informed

Need for change is recognized

Change control process—II



The SCM Process

C
h

a
n

g
e

 C
o

n
tr

o
l 
P

ro
c

e
s

s
-I

I

Assign individuals to configuration objects

“Check-out” configuration objects

Make the change

Review (audit )the change

Establish a baseline for testing

change control process—III

Request is queued for action

“Check in” the configuration items that have been changed



The SCM Process

Change Control Process-III

Rebuild appropriate version of software

Perform quality  assurance and testing activities

Review (audit) the change to all configuration items

Include changes in new version

Distribute the new version

“Promote”  changes for inclusion in next release (revision)



The SCM Process

Auditing

SCIs

Change
Requests SQA

Plan

SCM Audit



The SCM Process

Status Accounting

SCIs

Change

Requests

Change

Reports
ECOs

Status Accounting

Reporting



Configuration Management for Web and 
MobileApps

• Content.

– A typical WebApp contains a vast array of content—text, graphics, applets, 

scripts, audio/video files, forms, active page elements, tables, streaming data, 

and many others. 

– The challenge is to organize this sea of content into a rational set of configuration 

objects and then establish appropriate configuration control mechanisms for 

these objects.

• People.  

– Because a significant percentage of WebApp development continues to be 

conducted in an ad hoc manner, any person involved in the WebApp can (and 

often does) create content.



Configuration Management for Web and 
MobileApps

• Scalability. 

– As size and complexity grow, small changes can have far-reaching and unintended affects 
that can be problematic. Therefore, the rigor of configuration control mechanisms should 
be directly proportional to application scale.

• Politics.  

– Who ‘owns’ a WebApp? 

– Who assumes responsibility for the accuracy of the information on the Web site?

– Who assures that quality control processes have been followed before information is 
published to the site? 

– Who is responsible for making changes?  

– Who assumes the cost of change? 



Configuration Management for 
Web and MobileApps

Content 
Management

dat abase

conf igurat ion object s

t emplat es

Cont ent  

Management  

Syst em

HTML code 

+ script s

server-side

client -side browser



Configuration Management for 
Web and MobileApps

Change Management for WebApps-I

classify  t he 

request ed change

acquire relat ed object s 

assess impact  of  change

OK t o make

class 1 change

class 2 change

develop brief  writ t en 

descript ion of  change

develop brief  writ t en 

descript ion of change

t ransmit  t o all t eam 

members for rev iew

changes 

required 

in relat ed 

object s

class 3 change

furt her 

evaluat ion 

is required

class 4 change

OK t o make

t ransmit  t o all st ake- 

holders for rev iew

furt her 

evaluat ion 

is required



Configuration Management for 
Web and MobileApps

Change Management for WebApps-II

check out  object (s)  

t o be changed

make changes 

design, const ruct , t est

check in object (s)  

t hat  were changed

publish t o WebApp



Case Study (1)

• Software configuration process is also part of the ITSM (IT Software 
Management). The popular methodology is ITIL (IT Infrastructure 
Library)

• In the practical development and operation, the team usually apply the 
integrated software development tools



Case Study (2)

• The most popular tools is JIRA, which have the following features:

– Plan

– Track

– Release

– Report

• In the release software, we can define the release version, status, 
progress, start date and release date.



References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th ed. 

McGraw-Hill Companies.Inc, Americas, New York.  ISBN : 978 1 259 253157.

• Software Testing

http://www.io.com/~wazmo/qa/

• SW Testing Storm

http://www.mtsu.edu/~storm

• Conventional sw testing

http://www.testingexcellence.com/conventional-software-testing-on-an-extreme-

programming-team/

• Testing OO SW

http://diwww.epfl.ch/researchlgl/research/ongoing/testing.html

• Web testing

http://www.manageengine.com/products/qengine/web-testing.html

http://www.io.com/~wazmo/qa/
http://www.mtsu.edu/~storm
http://www.testingexcellence.com/conventional-software-testing-on-an-extreme-programming-team/
http://diwww.epfl.ch/researchlgl/research/ongoing/testing.html
http://www.manageengine.com/products/qengine/web-testing.html


Q & A





Software Engineering
Topic 8

Software Project Management & 
Software Metrics



Acknowledgement

These slides have been adapted from 

Pressman, R.S. (2015). Software Engineering : A 

Practioner's  Approach. 8th ed. McGraw-Hill 

Companies.Inc, Americas, New York.  ISBN : 978 

1 259 253157. Chapter 30, 31 and 32



Learning Objectives

LO  4  : Analyze the software project 
management and the proposed 
potential business project 



Contents

• Team Coordination & Communication

• Problem Decomposition

• A Framework for Product Metrics

• Metrics for the Requirements Model

• Metrics for the Design Model

• Design Metrics for WebApps

• Code Metrics

• Metrics for Testing

• Maintenance Metrics

• Metrics in the Process and Project Domain

• Software Measurement 

• Metrics for Software Quality



Team Coordination and
Communication

• Formal, impersonal approaches include software engineering documents and work
products (including source code), technical memos, project milestones, schedules, and
project control tools, change requests and related documentation, error tracking reports,
and repository data.

• Formal, interpersonal procedures focus on quality assurance activities applied to software
engineering work products. These include status review meetings and design and code
inspections.

• Informal, interpersonal procedures include group meetings for information dissemination
and problem solving and “collocation of requirements and development staff.”

• Electronic communication encompasses electronic mail, electronic bulletin boards, and by
extension, video-based conferencing systems.

• Interpersonal networking includes informal discussions with team members and those
outside the project who may have experience or insight that can assist team members.



Problem Decomposition

• Sometimes called partitioning or problem elaboration

• Once scope is defined …

– It is decomposed into constituent functions

– It is decomposed into user-visible data objects

or

– It is decomposed into a set of problem classes

• Decomposition process continues until all functions or problem classes

have been defined



Problem Decomposition

The Process

• Once a process framework has been established

– Consider project characteristics

– Determine the degree of rigor required

– Define a task set for each software engineering activity

• Task set =

– Software engineering tasks

– Work products

– Quality assurance points

– Milestones



Problem Decomposition

Melding the Problem and the Process



A Framework for Product
Metrics

McCall’s Triangle of Quality
M a in ta in a b il i tyM a in ta in a b il ity

F le x ib il i tyF le x ib il ity

T e s ta b ili tyT e s ta b ili ty

P o r ta b il ityP o r ta b i li ty

R e u s a b il i tyR e u s a b il ity

In te r o p e ra b i l i t yIn te ro p e ra b i l i ty

C o rre c tn e s sC o rre c tn e s s

R e lia b il i tyR e l ia b i l ity

E ff ic ie n c yE ff ic ie n c y

In te g ri tyIn te g r ity

U s a b il i tyU s a b il i ty

P R O D U C T T R A N S IT IO NP R O D U C T T R A N S IT IO NP R O D U C T R E V IS IO NP R O D U C T R E V IS IO N

P R O D U C T O P E R A T IO NP R O D U C T O P E R A T IO N



A Framework for Product
Metrics

• A measure provides a quantitative indication of the extent, amount, 

dimension, capacity, or size of some attribute of a product or 

process

• The IEEE glossary defines a metric as “a quantitative measure of 

the degree to which a system, component, or process possesses a 

given attribute.”

• An indicator is a metric or combination of metrics that provide insight 

into the software process, a software project, or the product itself 

Goal-Oriented Software Measurement



A Framework for Product
Metrics

Metrics Attributes

• Simple and computable. It should be relatively easy to learn how to derive the 
metric, and its computation should not demand inordinate effort or time

• Empirically and intuitively persuasive. The metric should satisfy the engineer’s 
intuitive notions about the product attribute under consideration

• Consistent and objective. The metric should always yield results that are 
unambiguous. 

• Consistent in its use of units and dimensions. The mathematical computation of the 
metric should use measures that do not lead to bizarre combinations of unit. 

• Programming language independent. Metrics should be based on the analysis 
model, the design model, or the structure of the program itself. 

• Effective mechanism for quality feedback. That is, the metric should provide a 
software engineer with information that can lead to a higher quality end product



A Framework for Product
Metrics

Metrics Attributes
• Simple and computable. It should be relatively easy to learn how to derive the metric, and its 

computation should not demand inordinate effort or time

• Empirically and intuitively persuasive. The metric should satisfy the engineer’s intuitive notions 
about the product attribute under consideration

• Consistent and objective. The metric should always yield results that are unambiguous. 

• Consistent in its use of units and dimensions. The mathematical computation of the metric should 
use measures that do not lead to bizarre combinations of unit. 

• Programming language independent. Metrics should be based on the analysis model, the design 
model, or the structure of the program itself. 

• Effective mechanism for quality feedback. That is, the metric should provide a software engineer 
with information that can lead to a higher quality end product



Metrics for the Requirements 
Model

• Function-based metrics: use the function point as 

a normalizing factor or as a measure of the “size” of 

the specification

• Specification metrics: used as an indication of 

quality by measuring number of requirements by 

type



Metrics for the Requirements 
Model

Function-Based Metrics

• The function point metric (FP), first proposed by Albrecht [ALB79], can be used effectively as a 
means for measuring the functionality delivered by a system.

• Function points are derived using an empirical relationship based on countable (direct) 
measures of software's information domain and assessments of software complexity

• Information domain values are defined in the following manner:

– number of external inputs (EIs)

– number of external outputs (EOs)

– number of external inquiries (EQs)

– number of internal logical files (ILFs)

– Number of external interface files (EIFs)



Metrics for the Requirements 
Model

Function Points

In formation  

Domain  Value Count simple   average   complex

Weighting factor

External Inputs (EI s)

External Outputs (EOs)

External Inquiries (EQs)

Internal Logical Files (ILFs)

External Interf ace Files (EIFs)

3 4 6

4 5 7

3 4 6

7 10 15

5 7 10

=

=

=

=

=

Count total

3

3

3

3

3



Metrics for the Design Model

Architectural Design Metrics

• Architectural design metrics

– Structural complexity = g(fan-out)

– Data complexity = f(input & output variables, fan-out)

– System complexity = h(structural & data complexity) 

• HK metric: architectural complexity as a function of fan-in and 

fan-out

• Morphology metrics: a function of the number of modules and 

the number of interfaces between modules



Metrics for the Design Model

Metrics for OO Design-I
Whitmire [Whi97] describes nine distinct and measurable characteristics of an OO design:

• Size

– Size is defined in terms of four views: population, volume, length, and functionality

• Complexity

– How classes of an OO design are interrelated to one another

• Coupling

– The physical connections between elements of the OO design

• Sufficiency

– “the degree to which an abstraction possesses the features required of it, or the 
degree to which a design component possesses features in its abstraction, from the 
point of view of the current application.”



Metrics for the Design Model

Metrics for OO Design-II
• Completeness

– An indirect implication about the degree to which the abstraction or design 
component can be reused

• Cohesion

– The degree to which all operations working together to achieve a single, well-
defined purpose

• Primitiveness

– Applied to both operations and classes, the degree to which an operation is atomic

• Similarity

– The degree to which two or more classes are similar in terms of their structure, 
function, behavior, or purpose

• Volatility

– Measures the likelihood that a change will occur



Metrics for the Design Model

Class-Oriented Metrics

• weighted methods per class

• depth of the inheritance tree

• number of children

• coupling between object classes

• response for a class

• lack of cohesion in methods

Proposed by Chidamber and Kemerer [Chi94]:



Metrics for the Design Model

Class-Oriented Metrics

• class size

• number of operations overridden by a subclass

• number of operations added by a subclass

• specialization index

Proposed by Lorenz and Kidd [Lor94]:



Metrics for the Design Model

Class-Oriented Metrics

• Method inheritance factor

• Coupling factor

• Polymorphism factor

The MOOD Metrics Suite [Har98b]:



Metrics for the Design Model

Class-Oriented Metrics

• average operation size

• operation complexity

• average number of parameters per operation

Proposed by Lorenz and Kidd [Lor94]:



Metrics for the Design Model

Component-Level Design Metrics

• Cohesion metrics:  a function of data objects and 

the locus of their definition

• Coupling metrics: a function of input and output 

parameters, global variables, and modules called

• Complexity metrics: hundreds have been 

proposed (e.g., cyclomatic complexity)



Metrics for the Design Model

Interface Design Metrics

• Layout appropriateness: a function of layout 

entities, the geographic position and the “cost” of 

making transitions among entities



Design Metrics 
for Web and Mobile Apps

• Does the user interface promote usability?
• Are the aesthetics of the WebApp appropriate for the application domain and 

pleasing to the user?

• Is the content designed in a manner that imparts the most information with the 
least effort?

• Is navigation efficient and straightforward?

• Has the WebApp architecture been designed to accommodate the special goals 
and objectives of WebApp users, the structure of content and functionality, and 
the flow of navigation required to use the system effectively?

• Are components designed in a manner that reduces procedural complexity and 
enhances the correctness, reliability and performance?



Code Metrics

• Halstead’s Software Science:  a comprehensive 
collection of metrics all predicated on the number 
(count and occurrence) of operators and operands 
within a component or program

– It should be noted that Halstead’s “laws” have 
generated substantial controversy, and many believe 
that the underlying theory has flaws. However, 
experimental verification for selected programming 
languages has been performed (e.g. [FEL89]).



Metrics for Testing

• Testing effort can also be estimated using metrics 
derived from Halstead measures

• Binder [Bin94] suggests a broad array of design 
metrics that have a direct influence on the 
“testability” of an OO system. 

– Lack of cohesion in methods (LCOM). 

– Percent public and protected (PAP). 

– Public access to data members (PAD).  

– Number of root classes (NOR).  

– Fan-in (FIN).  

– Number of children (NOC) and depth of the 
inheritance tree (DIT). 



Maintenance Metrics

• IEEE Std. 982.1-1988 [IEE94] suggests a software maturity index
(SMI) that provides an indication of the stability of a software product 
(based on changes that occur for each release of the product). The 
following information is determined:

• MT = the number of modules in the current release

• Fc = the number of modules in the current release             
that have been changed

• Fa = the number of modules in the current release 
that have been added

• Fd = the number of modules from the preceding release 
that were deleted in the current release

• The software maturity index is computed in the following manner:

• SMI = [MT - (Fa + Fc + Fd)]/MT

• As SMI approaches 1.0, the product begins to stabilize.



Metrics in the Process 
and Project Domain

process

measurement

What do we

use as a

basis?

•   size?

•   function?

project metrics

process metrics

product

product metrics

A Good Manager Measures



Metrics in the Process 
and Project Domain

Process Measurement
• We measure the efficacy of a software process indirectly. 

– That is, we derive a set of metrics based on the outcomes that can be 
derived from the process. 

– Outcomes include 

• measures of errors uncovered before release of the software

• defects delivered to and reported by end-users

• work products delivered (productivity)

• human effort expended

• calendar time expended

• schedule conformance

• other measures.  

• We also derive process metrics by measuring the characteristics of specific 
software engineering tasks. 



Metrics in the Process 
and Project Domain

Software Process Improvement

SPI

Process model

Improvement goals

Process metrics

Process improvement
recommendations



Metrics in the Process 
and Project Domain

Process Metrics
• Quality-related

• focus on quality of work products and deliverables

• Productivity-related
• Production of work-products related to effort expended

• Statistical SQA data
• error categorization & analysis

• Defect removal efficiency
• propagation of errors from process activity to activity

• Reuse data
• The number of components produced and their degree of reusability



Metrics in the Process 
and Project Domain

Project Metrics
• used to minimize the development schedule by making the adjustments necessary to avoid delays 

and mitigate potential problems and risks

• used to assess product quality on an ongoing basis and, when necessary, modify the technical 
approach to improve quality.

• every project should measure:

• inputs—measures of the resources (e.g., people, tools) required to do the work.

• outputs—measures of the deliverables or work products created during the software engineering 
process.

• results—measures that indicate the effectiveness of the deliverables.



Metrics in the Process 
and Project DomainTypical Project Metrics

• Effort/time per software engineering task

• Errors uncovered per review hour

• Scheduled vs. actual milestone dates

• Changes (number) and their characteristics

• Distribution of effort on software engineering tasks



Software Measurement

Typical Size-Oriented Metrics
• errors per KLOC (thousand lines of code)

• defects per KLOC

• $ per LOC

• pages of documentation per KLOC

• errors per person-month

• errors per review hour

• LOC per person-month

• $ per page of documentation



Software Measurement

Typical Function-Oriented Metrics

• errors per FP (thousand lines of code)

• defects per FP

• $ per FP

• pages of documentation per FP

• FP per person-month



Software Measurement

Comparing LOC and FP
Programming LOC per Function point

Language avg. median low high

Ada 154 - 104 205

Assembler 337 315 91 694

C 162 109 33 704
C++ 66 53 29 178

COBOL 77 77 14 400

Java 63 53 77 -

JavaScript 58 63 42 75

Perl 60 - - -

PL/1 78 67 22 263
Powerbuilder 32 31 11 105

SAS 40 41 33 49

Smalltalk 26 19 10 55
SQL 40 37 7 110

Visual Basic 47 42 16 158

Representative values developed by QSM



Software Measurement
Why Opt for FP?

• Programming language independent

• Used readily countable characteristics that are determined early in the software 
process

• Does not “penalize” inventive (short) implementations that use fewer LOC that 
other more clumsy versions

• Makes it easier to measure the impact of reusable components



Software Measurement
Object-Oriented Metrics

• Number of scenario scripts (use-cases)

• Number of support classes (required to implement the system but are not 
immediately related to the problem domain)

• Average number of support classes per key class (analysis class)

• Number of subsystems (an aggregation of classes that support a function that is 
visible to the end-user of a system) 



Software Measurement

WebApp Project Metrics
• Number of static Web pages (the end-user has no control over the content displayed on the page)

• Number of dynamic Web pages (end-user actions result in customized content displayed on the 
page)

• Number of internal page links (internal page links are pointers that provide a hyperlink to some 
other Web page within the WebApp)

• Number of persistent data objects

• Number of external systems interfaced

• Number of static content objects

• Number of dynamic content objects

• Number of executable functions



Metrics for 
Software QualityMeasuring Quality

• Correctness — the degree to which a program operates according to specification

• Maintainability —the degree to which a program is amenable to change

• Integrity —the degree to which a program is impervious to outside attack

• Usability —the degree to which a program is easy to use



Metrics for 
Software Quality

Defect Removal Efficiency

where:

E is the number of errors found before  

delivery of the software to the end-user 

D is the number of defects found after delivery.

DRE = E /(E + D)



Case Study

In the practical software development, the example of the software measurements 
are commonly used:

• TPS (Transaction Per Second)

• Throughput

• Availability of the system, example: 99% availability per months

• The monitoring tools is needed effectively to monitor the measurement



Case Study

Please give the other examples the measurement and target in your organization 
software development.



References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th ed. McGraw-Hill 
Companies.Inc, Americas, New York.  ISBN : 978 1 259 253157.

• Project Management

http://www.pricesystems.com/resources/mf_risks_remedies_facts.asp

• Project Portfolio Management 

http://www.daptiv.com/index.htm

• SW Metrics

http://www.spc.ca/resources/metrics/

• Function Point Measurement

http://www.functionpoints.com

• SW Metrics service Estimation  
http://www.charismatek.com/_public4/html/services/pdf/service_estimate.pdf

http://www.pricesystems.com/resources/mf_risks_remedies_facts.asp
http://www.daptiv.com/index.htm
http://www.spc.ca/resources/metrics/
http://www.functionpoints.com/
http://www.charismatek.com/_public4/html/services/pdf/service_estimate.pdf


Q & A





Software Engineering
Topic 9

Estimation for Software Project  and
Project Scheduling 



Acknowledgement

These slides have been adapted from 

Pressman, R.S. (2015). Software Engineering : A 

Practioner's  Approach. 8th ed. McGraw-Hill 

Companies.Inc, Americas, New York.  ISBN : 978 1 

259 253157. Chapter 33 and 34



Learning Objectives

LO  4  : Analyze the software project 

management



Contents

• Software Project Planning

• Software Scope

• Resources

• Project Estimation

• Empirical Estimation Models

• Estimation for OO Projects

• Estimation for Agile Projects

• The Make-Buy Decision

• Project Scheduling

• Earned Value Analysis (EVA)



Software Project Planning

The overall goal of project planning is to establish a pragmatic strategy 

for controlling, tracking, and monitoring a complex technical project.

Why?

So the end result gets done on time, with quality!



Software Project Planning

Project Planning Task Set-I

• Establish project scope

• Determine feasibility

• Analyze risks

– Risk analysis is considered

• Define required resources

– Determine require human resources

– Define reusable software resources

– Identify environmental resources



Software Project Planning

Project Planning Task Set-II
• Estimate cost and effort

– Decompose the problem

– Develop two or more estimates using size, function points, process tasks or 

use-cases

– Reconcile the estimates

• Develop a project schedule

– Scheduling is considered

• Establish a meaningful task set

• Define a task network

• Use scheduling tools to develop a timeline chart

• Define schedule tracking mechanisms



Software Project Planning

Estimation

• Estimation of resources, cost, and schedule for a software 

engineering effort requires 

– experience

– access to good historical information (metrics)

– the courage to commit to quantitative predictions when 

qualitative information is all that exists

• Estimation carries inherent risk and this risk leads to uncertainty



Software Project Planning

Write it Down!

Software

Project

Plan

Project scope

Estimates

Risks

Schedule

Control strategy



Software Scope

To Understand Scope

• Understand the customers needs

• understand the business context

• understand the project boundaries

• understand the customer’s motivation

• understand the likely paths for change

• understand that ...

Even when you understand,

nothing is guaranteed!



Resources

project

people

skills

number

location

reusable 

sof tware
OTS 

components

full-experience 

components

new 

components

part.-experience 

components

env ironment

hardware

software 

tools

network 

resources



Project Estimation

• Project scope must be understood

• Elaboration (decomposition) is 
necessary

• Historical metrics are very helpful

• At least two different techniques should 
be used

• Uncertainty is inherent in the process



Project Estimation

Estimation Accuracy

• Predicated on …

– the degree to which the planner has properly estimated the size of the product to be 

built

– the ability to translate the size estimate into human effort, calendar time, and 

dollars (a function of the availability of reliable software metrics from past projects)

– the degree to which the project plan reflects the abilities of the software team

– the stability of product requirements and the environment that supports the 

software engineering effort.



Project Estimation

Estimation Techniques

• Past (similar) project experience

• Conventional estimation techniques

– task breakdown and effort estimates

– size (e.g., FP) estimates

• Empirical models

• Automated tools



Project Estimation

Functional Decomposition

functional 

decomposition

Statement
of

Scope
Perform a Grammatical 

“parse”



Project Estimation

Conventional Methods:

LOC/FP Approach

• compute LOC/FP using estimates of information domain 

values

• use historical data to build estimates for the project



Project Estimation

Example: LOC Approach

Average productivity for systems of this type = 620 LOC/pm. 

Burdened labor rate =$8000 per month, the cost per line of code is 
approximately $13. 

Based on the LOC estimate and the historical productivity data, the total 
estimated project cost is $431,000 and the estimated effort is 54 person-
months.



Project Estimation

Example: FP Approach

The estimated number of FP is derived:

FPestimated = count-total x [0.65 + 0.01 x Σ (Fi)]

FPestimated = 375

organizational average productivity =  6.5 FP/pm. 

burdened labor rate = $8000 per month, approximately $1230/FP. 

Based on the FP estimate and the historical productivity data, total estimated project cost is $461,000 

and estimated effort is 58 person-months.



Project Estimation

Process-Based Estimation

Obtained from “process framework”

application

functions

framework activities

Effort required to 

accomplish

each framework 

activity for each 

application function



Project Estimation

Process-Based Estimation Example

Activity

Task

Function

UICF

2DGA

3DGA

DSM

PCF

CGDF

DAM

Totals

% effort

CC Planning
Risk 

Analysis Engineering
Construction 

Release TotalsCE

analysis design code test

0.25 0.25 0.25 3.50 20.50 4.50 16.50 46.00

1% 1% 1% 8% 45% 10% 36%

CC = customer communication   CE = customer evaluation

0.50

0.75
0.50

0.50

0.50
0.25

2.50

4.00
4.00

3.00

3.00
2.00

0.40

0.60
1.00

1.00

0.75
0.50

5.00
2.00

3.00

1.50

1.50
1.50

8.40

7.35
8.50

6.00

5.75
4.25

0.50 2.00 0.50 2.00 5.00

n/a
n/a

n/a

n/a

n/a
n/a

n/a

Based on an average burdened labor rate of $8,000 per month, the total 
estimated project cost is $368,000 and the estimated effort is 46 
person-months.



Project Estimation

Tool-Based Estimation

project characteristics

calibration factors

LOC/FP data



Empirical Estimation Models

General form:

effort = tuning coefficient * size
exponent

usually derived

as person-months

of effort required

either a constant or

a number derived based 

on complexity of project

usually LOC but

may also be

function point

empirically

derived



Empirical Estimation Models

COCOMO-II

• COCOMO II is actually a hierarchy of estimation models that address the following 

areas:

• Application composition model. Used during the early stages of software 

engineering, when prototyping of user interfaces, consideration of 

software and system interaction, assessment of performance, and 

evaluation of technology maturity are paramount.

• Early design stage model. Used once requirements have been stabilized 

and basic software architecture has been established.

• Post-architecture-stage model. Used during the construction of the 

software.



Empirical Estimation Models

The Software Equation

A dynamic multivariable model

E = [LOC x B0.333/P]3 x (1/t4)

where 

E = effort in person-months or person-years

t = project duration in months or years

B = “special skills factor”

P = “productivity parameter”



Estimation for OO Projects

1. Develop estimates using effort decomposition, FP analysis, and any other 
method that is applicable for conventional applications.

2. Using object-oriented requirements modeling, develop use-cases and 
determine a count. 

3. From the analysis model, determine the number of key classes.

4. Categorize the type of interface for the application and develop a multiplier 
for support classes:

Interface type Multiplier

No GUI 2.0

Text-based user interface 2.25

GUI 2.5

Complex GUI 3.0



Estimation for OO Projects

5. Multiply the number of key classes (step 3) by the multiplier to 

obtain an estimate for the number of support classes.

6. Multiply the total number of classes (key + support) by the 

average number of work-units per class. Lorenz and Kidd 

suggest 15 to 20 person-days per class.

7. Cross check the class-based estimate by multiplying the 

average number of work-units per use-case



Estimation for Agile Projects

• Each user scenario (a mini-use-case) is considered separately for estimation 
purposes.

• The scenario is decomposed into the set of software engineering tasks that 
will be required to develop it.

• Each task is estimated separately. Note: estimation can be based on 
historical data, an empirical model, or “experience.”

– Alternatively, the ‘volume’ of the scenario can be estimated in LOC, FP or 
some other volume-oriented measure (e.g., use-case count).

• Estimates for each task are summed to create an estimate for the scenario.

– Alternatively, the volume estimate for the scenario is translated into effort 
using historical data.

• The effort estimates for all scenarios that are to be implemented for a given 
software increment are summed to develop the effort estimate for the 
increment.



The Make-Buy Decision



The Make-Buy Decision

Computing Expected Cost

(path probability)  x (estimated path cost) 
i i

For example, the expected cost to build is:

expected cost         = 0.30 ($380K) + 0.70 ($450K) 

similarly,

expected cost          = $382K

expected cost          = $267K

expected cost          = $410K

build

reuse

buy

expected cost =

= $429 K



The Make-Buy Decision

Computing Expected Cost

(path probability)  x (estimated path cost) 
i i

For example, the expected cost to build is:

expected cost         = 0.30 ($380K) + 0.70 ($450K) 

similarly,

expected cost          = $382K

expected cost          = $267K

expected cost          = $410K

build

reuse

buy

expected cost =

= $429 K



Project Scheduling

Scheduling Principles

• Compartmentalization —define distinct tasks

• Interdependency —indicate task interrelationship 

• Effort validation —be sure resources are available

• Defined responsibilities —people must be assigned

• Defined outcomes —each task must have an output

• Defined milestones —review for quality



Project Scheduling

Effort and Delivery Time

Effort 

Cost

Impossible 

region

td

Ed

Tmin  = 0.75T d

to

Eo

Ea = m ( td
4 / ta

4)

development time

Ea = effort in person-months 

td = nominal delivery time for schedule 

to  = optimal development time (in terms of cost) 

ta = actual delivery time desired 



Project Scheduling

Effort Allocation

• “front end” activities
– customer communication
– analysis
– design
– review and modification

• construction activities

– coding or code generation

• testing and installation
– unit, integration
– white-box, black box
– regression 

40-50%

30-40%

15-20%



Project Scheduling

Defining Task Sets

• determine type of project

• assess the degree of rigor required

• identify adaptation criteria

• select appropriate software engineering tasks



Project Scheduling

Task Set Refinement
1.1     Concept scoping determines the overall scope of the project.

Task definition:  Task 1.1  Concept Scoping  

1.1.1 Identify need, benefits and potential customers;

1.1.2 Define desired output/control and input events that drive the application;

Begin Task 1.1.2

1.1.2.1       FTR:  Review written description of need

FTR indicates that a formal technical review (Chapter 26) is to be conducted.

1.1.2.2       Derive a list of customer visible outputs/inputs

1.1.2.3       FTR:  Review outputs/inputs with customer and revise as required;

endtask Task 1.1.2

1.1.3 Define the functionality/behavior for each major function;

Begin Task 1.1.3

1.1.3.1        FTR:  Review output and input data objects derived in task 1.1.2;

1.1.3.2        Derive a model of functions/behaviors;

1.1.3.3        FTR:  Review functions/behaviors with customer and revise as required;

endtask Task 1.1.3

1.1.4 Isolate those elements of the technology to be implemented in software; 

1.1.5 Research availability of existing software;

1.1.6 Define technical feasibility;

1.1.7 Make quick estimate of size;

1.1.8 Create a Scope Definition;

endTask definition:   Task 1.1

is refined to



Project Scheduling

Define a Task Network



Project Scheduling

Timeline Charts

Tasks Week 1 Week 2 Week 3 Week 4 Week n

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

Task 9

Task 10

Task 11

Task 12



Project Scheduling

Use Automated Tools to Derive a Timeline Chart



Project Scheduling

Schedule Tracking
– conduct periodic project status meetings in which each team member 

reports progress and problems.

– evaluate the results of all reviews conducted throughout the software 
engineering process.

– determine whether formal project milestones have been 
accomplished by the scheduled date.

– compare actual start-date to planned start-date for each project task 
listed in the resource table.

– meet informally with practitioners to obtain their subjective 
assessment of progress to date and problems on the horizon.

– use earned value analysis to assess progress quantitatively.



Project Scheduling

Progress on an OO Project-I

• Technical milestone:  OO analysis completed  

• All classes and the class hierarchy have been defined and reviewed.

• Class attributes and operations associated with a class have been defined and reviewed.

• Class relationships have been established and reviewed.

• A behavioral model  has been created and reviewed.

• Reusable classes have been noted.

• Technical milestone:  OO design completed

• The set of subsystems  has been defined and reviewed.

• Classes are allocated to subsystems and reviewed.

• Task allocation has been established and reviewed.

• Responsibilities and collaborations have been identified.

• Attributes and operations have been designed and reviewed.

• The communication model has been created and reviewed.



Scheduling for WebApp and 
Mobile Projects

Seven increments for Web and MobileApps

1. Basic company and product information

2. Detailed product information and downloads

3. Product quotes and processing product orders

4. Space layout and security system design

5. Information and ordering of monitoring srvices

6. Online control of monitoring equipment 

7. Accessing control information



Scheduling for WebApp and 
Mobile Projects

Design the interface for the fourth increment

• Develop a sketch of the page layout for the space design page

• Review layout with stakeholders

• Design space layout navigation mechanisms

• Design “drawing board” layout

• Develop procedural details for the graphical wall layout function

• Develop procedural details for the wall length computation and display function

• Develop procedural details for the graphical window layout function

• Develop procedural details for the graphical door layout function

• Design mechanisms for selecting security system components 



Project Scheduling

Progress on an OO Project-II
• Technical milestone:  OO programming completed

• Each new class has been implemented in code from the design model.

• Extracted classes (from a reuse library) have been implemented.

• Prototype or increment has been built.

• Technical milestone:  OO testing

• The correctness and completeness of OO analysis and design models has been reviewed.

• A class-responsibility-collaboration network  has been developed and reviewed.

• Test cases are designed and class-level tests have been conducted for each class.

• Test cases are designed and cluster testing  is completed and the classes are integrated.

• System level tests have been completed.



Earned Value Analysis (EVA)

• Earned value

– is a measure of progress

– enables us to assess the “percent of completeness” 

of a project using quantitative analysis rather than 

rely on a gut feeling

– “provides accurate and reliable readings of 

performance from as early as 15 percent into the 

project.” [Fle98]



Earned Value Analysis (EVA)

Computing Earned Value-I

• The budgeted cost of work scheduled (BCWS) is determined for each work 
task represented in the schedule. 

– BCWSi is the effort planned for work task i.

– To determine progress at a given point along the project schedule, the 
value of BCWS is the sum of the BCWSi values for all work tasks that 
should have been completed by that point in time on the project 
schedule. 

• The BCWS values for all work tasks are summed to derive the budget at 
completion, BAC. Hence,

BAC = ∑ (BCWSk) for all tasks k



Earned Value Analysis (EVA)

Computing Earned Value-II
• Next, the value for budgeted cost of work performed (BCWP) is computed. 

– The value for BCWP is the sum of the BCWS values for all work tasks that 
have actually been completed by a point in time on the project schedule.

• “the distinction between the BCWS and the BCWP is that the former represents 
the budget of the activities that were planned to be completed and the latter 
represents the budget of the activities that actually were completed.” [Wil99] 

• Given values for BCWS, BAC, and BCWP, important progress indicators can be 
computed:

– Schedule performance index,  SPI = BCWP/BCWS

– Schedule variance, SV =  BCWP – BCWS

– SPI is an indication of the efficiency with which the project is utilizing 
scheduled resources.



Earned Value Analysis (EVA)

Computing Earned Value-III

• Percent scheduled for completion = BCWS/BAC

– provides an indication of the percentage of work that should have been 

completed by time t.

• Percent complete = BCWP/BAC

– provides a quantitative indication of the percent of completeness of the project 

at a given point in time, t.

• Actual cost of work performed, ACWP,  is the sum of the effort actually expended on 

work tasks that have been completed by a point in time on the project schedule. It 

is then possible to compute

• Cost performance index, CPI = BCWP/ACWP

• Cost variance, CV =  BCWP – ACWP



Case Study

The use of project management tools

• In practical project, the use of project management tools are very effective to 

manage the project process including:

– Scheduling

– Resources

– Estimation

– Costing

– etc



References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th

ed. McGraw-Hill Companies.Inc, Americas, New York.  ISBN : 978 1 259 

253157.

• IT and sw estimation

http://www.charismatek.com/_public4/html/services/service_estimation.h

tm

• Overview of COCOMO

http://www.softstarsystems.com/overview.htm

• Function Point Language

http://www.qsm.com/resources/function-point-languages-table/index.html

• PERT

http://en.wikipedia.org/wiki/Program_Evaluation_and_Review_Technique

http://www.charismatek.com/_public4/html/services/service_estimation.htm
http://www.softstarsystems.com/overview.htm
http://www.qsm.com/resources/function-point-languages-table/index.html
http://en.wikipedia.org/wiki/Program_Evaluation_and_Review_Technique


Q & A





Software Engineering
Topic 10

Software Risk Management & Reengineering



Acknowledgement

These slides have been adapted from 

Pressman, R.S. (2015). Software 

Engineering : A Practioner's  Approach.

8th ed. McGraw-Hill Companies.Inc, 

Americas, New York.  ISBN : 978 1 259 

253157. Chapter 35 and 36



Learning Objectives

LO  4  : Analyze the software project 

management and the proposed 

potential business project 



Contents

• Reactive versus Proactive Risk Strategies

• Software Risk 

• Software Maintenance

• Business Process Reengineering

• Software Reengineering

• Reverse Engineering

• Forward Engineering



Reactive versus 
Proactive Risk Strategies

Reactive Risk Management
• project team reacts to risks when they occur

• mitigation—plan for additional resources in anticipation of fire fighting

• fix on failure—resource are found and applied when the risk strikes

• crisis management—failure does not respond to applied resources and project is 
in jeopardy



Reactive versus 
Proactive Risk Strategies

Proactive Risk Management

• formal risk analysis is performed

• organization corrects the root causes of risk

• TQM concepts and statistical SQA

• examining risk sources that lie beyond the bounds of the software

• developing the skill to manage change  



Software Risk

Seven Principles

• Maintain a global perspective—view software risks within the context of system and the business 
problem 

• Take a forward-looking view—think about the risks that may arise in the future;  establish 
contingency plans 

• Encourage open communication—if someone states a potential risk, don’t discount it. 

• Integrate—a consideration of risk must be integrated into the software process

• Emphasize a continuous process—the team must be vigilant throughout the software process, 
modifying identified risks as more information is known and adding new ones as better insight is 
achieved.

• Develop a shared product vision—if all stakeholders share the same vision of the software, it 
likely that better risk identification and assessment will occur.

• Encourage teamwork—the talents, skills and knowledge of all stakeholder should be pooled



Software Risk

Risk Management Paradigm

RISK

control

identify

analyze

plan

track



Software Risk
Risk Identification

• Product size —risks associated with the overall size of the software to be built or modified.

• Business impact —risks associated with constraints imposed by management or the marketplace.

• Customer characteristics —risks associated with the sophistication of the customer and the developer's 
ability to communicate with the customer in a timely manner.

• Process definition —risks associated with the degree to which the software process has been defined and is 
followed by the development organization.

• Development environment —risks associated with the availability and quality of the tools to be used to build 
the product.

• Technology to be built —risks associated with the complexity of the system to be built and the "newness" of 
the technology that is packaged by the system.

• Staff size and experience —risks associated with the overall technical and project experience of the software 
engineers who will do the work.



Software Risk
Assessing Project Risk-I

• Have top software and customer managers formally committed to support the 
project?

• Are end-users enthusiastically committed to the project and the system/product 
to be built?

• Are requirements fully understood by the software engineering team and their 
customers?

• Have customers been involved fully in the definition of requirements?

• Do end-users have realistic expectations?



Software Risk
Assessing Project Risk-II

• Is project scope stable?
• Does the software engineering team have the right mix of skills?
• Are project requirements stable?
• Does the project team have experience with the technology to be implemented?
• Is the number of people on the project team adequate to do the job?

• Do all customer/user constituencies agree on the importance of the project and 
on the requirements for the system/product to be built?



Software Risk

Risk Components

• performance risk—the degree of uncertainty that the product will meet its 
requirements and be fit for its intended use.

• cost risk—the degree of uncertainty that the project budget will be maintained.

• support risk—the degree of uncertainty that the resultant software will be easy to 
correct, adapt, and enhance.

• schedule risk—the degree of uncertainty that the project schedule will be 
maintained and that the product will be delivered on time.



Software Risk
Risk Projection

• Risk projection, also called risk estimation, attempts to rate each risk in two ways
• the likelihood or probability that the risk is real 
• the consequences of the problems associated with the risk, should it occur. 

• The are four risk projection steps:

• establish a scale that reflects the perceived likelihood of a risk
• delineate the consequences of the risk

• estimate the impact of the risk on the project and the product,
• note the overall accuracy of the risk projection so that there will be no misunderstandings.



Software Risk

Impact assessment



Software Risk
Building the Risk Table

• Estimate the probability of occurrence

• Estimate the impact on the project on a scale of 1 to 4, where

• 1 = catastrophic 

• 2 = critical

• 3 = marginal

• 4 = negligible

• sort the table by probability and impact



Software Risk
Sample risk table prior to sorting



Software Risk
Risk Exposure (Impact)

The overall risk exposure, RE, is determined 

using the following relationship [Hal98]:

RE = P x C

where 

P is the probability of occurrence for a risk, and 

C is the cost to the project should the risk occur.



Software Risk
Risk Exposure Example

• Risk identification. Only 70 percent of the software components scheduled for reuse 
will, in fact, be integrated into the application. The remaining functionality will have to be 
custom developed.

• Risk probability. 80% (likely).
• Risk impact. 60 reusable software components were planned. If only 70 percent can be 

used, 18 components would have to be developed from scratch (in addition to other 
custom software that has been scheduled for development). Since the average 
component is 100 LOC and local data indicate that the software engineering cost for each 
LOC is $14.00, the overall cost (impact) to develop the components would be 18 x 100 x 
14 = $25,200.

• Risk exposure. RE = 0.80 x 25,200 ~ $20,200.



Software Risk
Risk Mitigation, Monitoring, and Management 

• Mitigation — how can we avoid the risk?

• Monitoring — what factors can we track that will enable us to determine if the 
risk is becoming more or less likely?

• Management — what contingency plans do we have if the risk becomes a reality?



Software Risk
Risk information sheet



Software Maintenance
• Software is released to end-users, and 

• within days, bug reports filter back to the software engineering organization. 

• within weeks, one class of users indicates that the software must be changed so that 
it can accommodate the special needs of their environment. 

• within months, another corporate group who wanted nothing to do with the 
software when it was released, now recognizes that it may provide them with 
unexpected benefit. They’ll need a few enhancements to make it work in their world.

• All of this work is software maintenance



Software Maintenance
Maintainable Software

• Maintainable software exhibits effective modularity

• It makes use of design patterns that allow ease of understanding. 

• It has been constructed using well-defined coding standards and conventions, 
leading to source code that is self-documenting and understandable. 

• It has undergone a variety of quality assurance techniques that have uncovered 
potential maintenance problems before the software is released. 

• It has been created by software engineers who recognize that they may not be 
around when changes must be made. 

• Therefore, the design and implementation of the software must “assist” the person who is making the change



Software Maintenance
Software Supportability

• “the capability of supporting a software system over its whole product life. 
• This implies satisfying any necessary needs or requirements, but also the provision of 

equipment, support infrastructure, additional software, facilities, manpower, or any 
other resource required to maintain the software operational and capable of 
satisfying its function.” [SSO08]

• The software should contain facilities to assist support personnel when a defect is 
encountered in the operational environment (and make no mistake, defects will be 
encountered). 

• Support personnel should have access to a database that contains records of all defects 
that have already been encountered—their characteristics, cause, and cure.



Business Process 
Reengineering

Reengineering

Business 
processes

IT
systems Software

applicationsReengineering



Business Process 
Reengineering

• Business definition. Business goals are identified within the context of four key drivers: cost 
reduction, time reduction, quality improvement, and personnel development and empowerment. 

• Process identification. Processes that are critical to achieving the goals defined in the business 
definition are identified.

• Process evaluation. The existing process is thoroughly analyzed and measured. 

• Process specification and design. Based on information obtained during the first three BPR 
activities, use-cases are prepared for each process that is to be redesigned.

• Prototyping. A redesigned business process must be prototyped before it is fully integrated into 
the business.

• Refinement and instantiation. Based on feedback from the prototype, the business process is 
refined and then instantiated within a business system.



Business Process 
Reengineering



Business Process 
Reengineering

BPR Principles

• Organize around outcomes, not tasks. 

• Have those who use the output of the process perform the process.

• Incorporate information processing work into the real work that produces the raw 
information. 

• Treat geographically dispersed resources as though they were centralized.  

• Link parallel activities instead of integrated their results.   When different 

• Put the decision point where the work is performed, and build control into the process.

• Capture data once, at its source.



Software Reengineering

Forward
engineering

Data
restructuring

code
restructuring

reverse
engineering

document
restructuring

inventory
analysis



Software Reengineering
Inventory Analysis

• build a table that contains all applications

• establish a list of criteria, e.g., 
• name of the application
• year it was originally created
• number of substantive changes made to it
• total effort applied to make these changes
• date of last substantive change
• effort applied to make the last change
• system(s) in which it resides
• applications to which it interfaces, ...

• analyze and prioritize to select candidates for reengineering



Software Reengineering
Document Restructuring

• Weak documentation is the trademark of many legacy systems. 

• But what do we do about it? What are our options?

• Options …

• Creating documentation is far too time consuming. If the system works, we’ll live with what we have. In 
some cases, this is the correct approach.

• Documentation must be updated, but we have limited resources. We’ll use a “document when touched” 
approach. It may not be necessary to fully redocument an application.

• The system is business critical and must be fully redocumented. Even in this case, an intelligent approach 
is to pare documentation to an essential minimum.



Reverse Engineering

dirty source code

restructure
code

extract
abstractions

refine
&

simplify

clean source code

initial specification

final specification

processing

interface

database



Reverse Engineering
Code Restructuring

• Source code is analyzed using a restructuring tool. 

• Poorly design code segments are redesigned

• Violations of structured programming constructs are noted and code is then restructured 
(this can be done automatically)

• The resultant restructured code is reviewed and tested to ensure that no anomalies have 
been introduced

• Internal code documentation is updated.



Reverse Engineering
Data Restructuring

• Unlike code restructuring, which occurs at a relatively low level of abstraction, data structuring is 
a full-scale reengineering activity

• In most cases, data restructuring begins with a reverse engineering activity. 

• Current data architecture is dissected and necessary data models are defined.

• Data objects and attributes are identified, and existing data structures are reviewed for quality.

• When data structure is weak (e.g., flat files are currently implemented, when a relational approach 
would greatly simplify processing), the data are reengineered.

• Because data architecture has a strong influence on program architecture and the algorithms that 
populate it, changes to the data will invariably result in either architectural or code-level changes.



Forward Engineering

1.  The cost to maintain one line of source code may be 20 to 40 
times the cost of initial development of that line.      

2.  Redesign of the software architecture (program and/or data 
structure), using modern design concepts, can greatly facilitate 
future maintenance.

3.  Because a prototype of the software already exists, 
development productivity should be much higher than average.      

4.  The user now has experience with the software. Therefore, new 
requirements and the direction of change can be ascertained 
with greater ease.

5. CASE tools for reengineering will automate some parts of the 
job.      

6.  A complete software configuration (documents, programs and 
data) will exist upon completion of preventive maintenance.



Forward Engineering
Economics of Reengineering-I

• A cost/benefit analysis model for reengineering has been proposed by Sneed [Sne95]. Nine 
parameters are defined:

• P1 = current annual maintenance cost for an application.

• P2 = current annual operation cost for an application.

• P3 = current annual business value of an application.

• P4 = predicted annual maintenance cost after reengineering.

• P5 = predicted annual operations cost after reengineering.

• P6 = predicted annual business value after reengineering.

• P7 = estimated reengineering costs.

• P8 = estimated reengineering calendar time.

• P9 = reengineering risk factor (P9 = 1.0 is nominal).

• L  = expected life of the system.



Forward Engineering
Economics of Reengineering-II

• The cost associated with continuing maintenance of a candidate application (i.e., 
reengineering is not performed) can be defined as

Cmaint = [P3 - (P1 + P2)] x L

• The costs associated with reengineering are defined using the following relationship:

Creeng = [P6 - (P4 + P5) x (L - P8) - (P7 x P9)] `

• Using the costs presented in equations above, the overall benefit of reengineering can be 
computed as

cost benefit = Creeng - Cmaint



Case Study (1)
Risk and Issues

• Some people have a confusion between risk and issues.
• Issue happen in the current condition

• Example: the application have some bugs during the report calculation

• Risks will happen in the future
• Example: Since there is no backup server, there is a possibility to have the system unavailability if 

the current production server is down



Case Study (2)
Risk and Issues

 Issue Management (Problem 
solving, Corrective action) 

 Risk Management (Preventive 
action)

Issue

Risk



Case Study (3)Risk and Issues

• Some people have a confusion between risk and 
issues.
– Issue happen in the current condition

• Example: the application have some bugs during the report 
calculation

– Risks will happen in the future
• Example: Since there is no backup server, there is a possibility to 

have the system unavailability if the current production server is 
down



References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th ed. McGraw-
Hill Companies.Inc, Americas, New York.  ISBN : 978 1 259 253157.

• Risk Management & operational Risk

http://www.grafp.com/products/risk-manage.html

• Sw maintenance and Reengineering

http://www.csse.monash.edu.au/~jonmc/CSE2305/Topics/13.25.SWEng4/html/tex
t.html

http://www.grafp.com/products/risk-manage.html
http://www.csse.monash.edu.au/~jonmc/CSE2305/Topics/13.25.SWEng4/html/text.html


References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th ed. 
McGraw-Hill Companies.Inc, Americas, New York.  ISBN : 978 1 259 253157.

• Risk Management & operational Risk

http://www.grafp.com/products/risk-manage.html

• Sw maintenance and Reengineering

http://www.csse.monash.edu.au/~jonmc/CSE2305/Topics/13.25.SWEng4/h
tml/text.html

http://www.grafp.com/products/risk-manage.html
http://www.csse.monash.edu.au/~jonmc/CSE2305/Topics/13.25.SWEng4/html/text.html


Q & A




