
Software Engineering
Topic 10

Software Risk Management & Reengineering

Acknowledgement

These slides have been adapted from

Pressman, R.S. (2015). Software

Engineering : A Practioner's Approach.

8th ed. McGraw-Hill Companies.Inc,

Americas, New York. ISBN : 978 1 259

253157. Chapter 35 and 36

Learning Objectives

LO 4 : Analyze the software project

management and the proposed

potential business project

Contents

• Reactive versus Proactive Risk Strategies

• Software Risk

• Software Maintenance

• Business Process Reengineering

• Software Reengineering

• Reverse Engineering

• Forward Engineering

Reactive versus
Proactive Risk Strategies

Reactive Risk Management
• project team reacts to risks when they occur

• mitigation—plan for additional resources in anticipation of fire fighting

• fix on failure—resource are found and applied when the risk strikes

• crisis management—failure does not respond to applied resources and project is
in jeopardy

Reactive versus
Proactive Risk Strategies

Proactive Risk Management

• formal risk analysis is performed

• organization corrects the root causes of risk

• TQM concepts and statistical SQA

• examining risk sources that lie beyond the bounds of the software

• developing the skill to manage change

Software Risk

Seven Principles

• Maintain a global perspective—view software risks within the context of system and the business
problem

• Take a forward-looking view—think about the risks that may arise in the future; establish
contingency plans

• Encourage open communication—if someone states a potential risk, don’t discount it.

• Integrate—a consideration of risk must be integrated into the software process

• Emphasize a continuous process—the team must be vigilant throughout the software process,
modifying identified risks as more information is known and adding new ones as better insight is
achieved.

• Develop a shared product vision—if all stakeholders share the same vision of the software, it
likely that better risk identification and assessment will occur.

• Encourage teamwork—the talents, skills and knowledge of all stakeholder should be pooled

Software Risk

Risk Management Paradigm

RISK

control

identify

analyze

plan

track

Software Risk
Risk Identification

• Product size —risks associated with the overall size of the software to be built or modified.

• Business impact —risks associated with constraints imposed by management or the marketplace.

• Customer characteristics —risks associated with the sophistication of the customer and the developer's
ability to communicate with the customer in a timely manner.

• Process definition —risks associated with the degree to which the software process has been defined and is
followed by the development organization.

• Development environment —risks associated with the availability and quality of the tools to be used to build
the product.

• Technology to be built —risks associated with the complexity of the system to be built and the "newness" of
the technology that is packaged by the system.

• Staff size and experience —risks associated with the overall technical and project experience of the software
engineers who will do the work.

Software Risk
Assessing Project Risk-I

• Have top software and customer managers formally committed to support the
project?

• Are end-users enthusiastically committed to the project and the system/product
to be built?

• Are requirements fully understood by the software engineering team and their
customers?

• Have customers been involved fully in the definition of requirements?

• Do end-users have realistic expectations?

Software Risk
Assessing Project Risk-II

• Is project scope stable?
• Does the software engineering team have the right mix of skills?
• Are project requirements stable?
• Does the project team have experience with the technology to be implemented?
• Is the number of people on the project team adequate to do the job?

• Do all customer/user constituencies agree on the importance of the project and
on the requirements for the system/product to be built?

Software Risk

Risk Components

• performance risk—the degree of uncertainty that the product will meet its
requirements and be fit for its intended use.

• cost risk—the degree of uncertainty that the project budget will be maintained.

• support risk—the degree of uncertainty that the resultant software will be easy to
correct, adapt, and enhance.

• schedule risk—the degree of uncertainty that the project schedule will be
maintained and that the product will be delivered on time.

Software Risk
Risk Projection

• Risk projection, also called risk estimation, attempts to rate each risk in two ways
• the likelihood or probability that the risk is real
• the consequences of the problems associated with the risk, should it occur.

• The are four risk projection steps:

• establish a scale that reflects the perceived likelihood of a risk
• delineate the consequences of the risk

• estimate the impact of the risk on the project and the product,
• note the overall accuracy of the risk projection so that there will be no misunderstandings.

Software Risk

Impact assessment

Software Risk
Building the Risk Table

• Estimate the probability of occurrence

• Estimate the impact on the project on a scale of 1 to 4, where

• 1 = catastrophic

• 2 = critical

• 3 = marginal

• 4 = negligible

• sort the table by probability and impact

Software Risk
Sample risk table prior to sorting

Software Risk
Risk Exposure (Impact)

The overall risk exposure, RE, is determined

using the following relationship [Hal98]:

RE = P x C

where

P is the probability of occurrence for a risk, and

C is the cost to the project should the risk occur.

Software Risk
Risk Exposure Example

• Risk identification. Only 70 percent of the software components scheduled for reuse
will, in fact, be integrated into the application. The remaining functionality will have to be
custom developed.

• Risk probability. 80% (likely).
• Risk impact. 60 reusable software components were planned. If only 70 percent can be

used, 18 components would have to be developed from scratch (in addition to other
custom software that has been scheduled for development). Since the average
component is 100 LOC and local data indicate that the software engineering cost for each
LOC is $14.00, the overall cost (impact) to develop the components would be 18 x 100 x
14 = $25,200.

• Risk exposure. RE = 0.80 x 25,200 ~ $20,200.

Software Risk
Risk Mitigation, Monitoring, and Management

• Mitigation — how can we avoid the risk?

• Monitoring — what factors can we track that will enable us to determine if the
risk is becoming more or less likely?

• Management — what contingency plans do we have if the risk becomes a reality?

Software Risk
Risk information sheet

Software Maintenance
• Software is released to end-users, and

• within days, bug reports filter back to the software engineering organization.

• within weeks, one class of users indicates that the software must be changed so that
it can accommodate the special needs of their environment.

• within months, another corporate group who wanted nothing to do with the
software when it was released, now recognizes that it may provide them with
unexpected benefit. They’ll need a few enhancements to make it work in their world.

• All of this work is software maintenance

Software Maintenance
Maintainable Software

• Maintainable software exhibits effective modularity

• It makes use of design patterns that allow ease of understanding.

• It has been constructed using well-defined coding standards and conventions,
leading to source code that is self-documenting and understandable.

• It has undergone a variety of quality assurance techniques that have uncovered
potential maintenance problems before the software is released.

• It has been created by software engineers who recognize that they may not be
around when changes must be made.

• Therefore, the design and implementation of the software must “assist” the person who is making the change

Software Maintenance
Software Supportability

• “the capability of supporting a software system over its whole product life.
• This implies satisfying any necessary needs or requirements, but also the provision of

equipment, support infrastructure, additional software, facilities, manpower, or any
other resource required to maintain the software operational and capable of
satisfying its function.” [SSO08]

• The software should contain facilities to assist support personnel when a defect is
encountered in the operational environment (and make no mistake, defects will be
encountered).

• Support personnel should have access to a database that contains records of all defects
that have already been encountered—their characteristics, cause, and cure.

Business Process
Reengineering

Reengineering

Business
processes

IT
systems Software

applicationsReengineering

Business Process
Reengineering

• Business definition. Business goals are identified within the context of four key drivers: cost
reduction, time reduction, quality improvement, and personnel development and empowerment.

• Process identification. Processes that are critical to achieving the goals defined in the business
definition are identified.

• Process evaluation. The existing process is thoroughly analyzed and measured.

• Process specification and design. Based on information obtained during the first three BPR
activities, use-cases are prepared for each process that is to be redesigned.

• Prototyping. A redesigned business process must be prototyped before it is fully integrated into
the business.

• Refinement and instantiation. Based on feedback from the prototype, the business process is
refined and then instantiated within a business system.

Business Process
Reengineering

Business Process
Reengineering

BPR Principles

• Organize around outcomes, not tasks.

• Have those who use the output of the process perform the process.

• Incorporate information processing work into the real work that produces the raw
information.

• Treat geographically dispersed resources as though they were centralized.

• Link parallel activities instead of integrated their results. When different

• Put the decision point where the work is performed, and build control into the process.

• Capture data once, at its source.

Software Reengineering

Forward
engineering

Data
restructuring

code
restructuring

reverse
engineering

document
restructuring

inventory
analysis

Software Reengineering
Inventory Analysis

• build a table that contains all applications

• establish a list of criteria, e.g.,
• name of the application
• year it was originally created
• number of substantive changes made to it
• total effort applied to make these changes
• date of last substantive change
• effort applied to make the last change
• system(s) in which it resides
• applications to which it interfaces, ...

• analyze and prioritize to select candidates for reengineering

Software Reengineering
Document Restructuring

• Weak documentation is the trademark of many legacy systems.

• But what do we do about it? What are our options?

• Options …

• Creating documentation is far too time consuming. If the system works, we’ll live with what we have. In
some cases, this is the correct approach.

• Documentation must be updated, but we have limited resources. We’ll use a “document when touched”
approach. It may not be necessary to fully redocument an application.

• The system is business critical and must be fully redocumented. Even in this case, an intelligent approach
is to pare documentation to an essential minimum.

Reverse Engineering

dirty source code

restructure
code

extract
abstractions

refine
&

simplify

clean source code

initial specification

final specification

processing

interface

database

Reverse Engineering
Code Restructuring

• Source code is analyzed using a restructuring tool.

• Poorly design code segments are redesigned

• Violations of structured programming constructs are noted and code is then restructured
(this can be done automatically)

• The resultant restructured code is reviewed and tested to ensure that no anomalies have
been introduced

• Internal code documentation is updated.

Reverse Engineering
Data Restructuring

• Unlike code restructuring, which occurs at a relatively low level of abstraction, data structuring is
a full-scale reengineering activity

• In most cases, data restructuring begins with a reverse engineering activity.

• Current data architecture is dissected and necessary data models are defined.

• Data objects and attributes are identified, and existing data structures are reviewed for quality.

• When data structure is weak (e.g., flat files are currently implemented, when a relational approach
would greatly simplify processing), the data are reengineered.

• Because data architecture has a strong influence on program architecture and the algorithms that
populate it, changes to the data will invariably result in either architectural or code-level changes.

Forward Engineering

1. The cost to maintain one line of source code may be 20 to 40
times the cost of initial development of that line.

2. Redesign of the software architecture (program and/or data
structure), using modern design concepts, can greatly facilitate
future maintenance.

3. Because a prototype of the software already exists,
development productivity should be much higher than average.

4. The user now has experience with the software. Therefore, new
requirements and the direction of change can be ascertained
with greater ease.

5. CASE tools for reengineering will automate some parts of the
job.

6. A complete software configuration (documents, programs and
data) will exist upon completion of preventive maintenance.

Forward Engineering
Economics of Reengineering-I

• A cost/benefit analysis model for reengineering has been proposed by Sneed [Sne95]. Nine
parameters are defined:

• P1 = current annual maintenance cost for an application.

• P2 = current annual operation cost for an application.

• P3 = current annual business value of an application.

• P4 = predicted annual maintenance cost after reengineering.

• P5 = predicted annual operations cost after reengineering.

• P6 = predicted annual business value after reengineering.

• P7 = estimated reengineering costs.

• P8 = estimated reengineering calendar time.

• P9 = reengineering risk factor (P9 = 1.0 is nominal).

• L = expected life of the system.

Forward Engineering
Economics of Reengineering-II

• The cost associated with continuing maintenance of a candidate application (i.e.,
reengineering is not performed) can be defined as

Cmaint = [P3 - (P1 + P2)] x L

• The costs associated with reengineering are defined using the following relationship:

Creeng = [P6 - (P4 + P5) x (L - P8) - (P7 x P9)] `

• Using the costs presented in equations above, the overall benefit of reengineering can be
computed as

cost benefit = Creeng - Cmaint

Case Study (1)
Risk and Issues

• Some people have a confusion between risk and issues.
• Issue happen in the current condition

• Example: the application have some bugs during the report calculation

• Risks will happen in the future
• Example: Since there is no backup server, there is a possibility to have the system unavailability if

the current production server is down

Case Study (2)
Risk and Issues

 Issue Management (Problem
solving, Corrective action)

 Risk Management (Preventive
action)

Issue

Risk

Case Study (3)Risk and Issues

• Some people have a confusion between risk and
issues.
– Issue happen in the current condition

• Example: the application have some bugs during the report
calculation

– Risks will happen in the future
• Example: Since there is no backup server, there is a possibility to

have the system unavailability if the current production server is
down

References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th ed. McGraw-
Hill Companies.Inc, Americas, New York. ISBN : 978 1 259 253157.

• Risk Management & operational Risk

http://www.grafp.com/products/risk-manage.html

• Sw maintenance and Reengineering

http://www.csse.monash.edu.au/~jonmc/CSE2305/Topics/13.25.SWEng4/html/tex
t.html

http://www.grafp.com/products/risk-manage.html
http://www.csse.monash.edu.au/~jonmc/CSE2305/Topics/13.25.SWEng4/html/text.html

References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th ed.
McGraw-Hill Companies.Inc, Americas, New York. ISBN : 978 1 259 253157.

• Risk Management & operational Risk

http://www.grafp.com/products/risk-manage.html

• Sw maintenance and Reengineering

http://www.csse.monash.edu.au/~jonmc/CSE2305/Topics/13.25.SWEng4/h
tml/text.html

http://www.grafp.com/products/risk-manage.html
http://www.csse.monash.edu.au/~jonmc/CSE2305/Topics/13.25.SWEng4/html/text.html

Q & A

