
Software Engineering
Topic 8

Software Project Management &
Software Metrics

Acknowledgement

These slides have been adapted from

Pressman, R.S. (2015). Software Engineering : A

Practioner's Approach. 8th ed. McGraw-Hill

Companies.Inc, Americas, New York. ISBN : 978

1 259 253157. Chapter 30, 31 and 32

Learning Objectives

LO 4 : Analyze the software project
management and the proposed
potential business project

Contents

• Team Coordination & Communication

• Problem Decomposition

• A Framework for Product Metrics

• Metrics for the Requirements Model

• Metrics for the Design Model

• Design Metrics for WebApps

• Code Metrics

• Metrics for Testing

• Maintenance Metrics

• Metrics in the Process and Project Domain

• Software Measurement

• Metrics for Software Quality

Team Coordination and
Communication

• Formal, impersonal approaches include software engineering documents and work
products (including source code), technical memos, project milestones, schedules, and
project control tools, change requests and related documentation, error tracking reports,
and repository data.

• Formal, interpersonal procedures focus on quality assurance activities applied to software
engineering work products. These include status review meetings and design and code
inspections.

• Informal, interpersonal procedures include group meetings for information dissemination
and problem solving and “collocation of requirements and development staff.”

• Electronic communication encompasses electronic mail, electronic bulletin boards, and by
extension, video-based conferencing systems.

• Interpersonal networking includes informal discussions with team members and those
outside the project who may have experience or insight that can assist team members.

Problem Decomposition

• Sometimes called partitioning or problem elaboration

• Once scope is defined …

– It is decomposed into constituent functions

– It is decomposed into user-visible data objects

or

– It is decomposed into a set of problem classes

• Decomposition process continues until all functions or problem classes

have been defined

Problem Decomposition

The Process

• Once a process framework has been established

– Consider project characteristics

– Determine the degree of rigor required

– Define a task set for each software engineering activity

• Task set =

– Software engineering tasks

– Work products

– Quality assurance points

– Milestones

Problem Decomposition

Melding the Problem and the Process

A Framework for Product
Metrics

McCall’s Triangle of Quality
M a in ta in a b il i tyM a in ta in a b il ity

F le x ib il i tyF le x ib il ity

T e s ta b ili tyT e s ta b ili ty

P o r ta b il ityP o r ta b i li ty

R e u s a b il i tyR e u s a b il ity

In te r o p e ra b i l i t yIn te ro p e ra b i l i ty

C o rre c tn e s sC o rre c tn e s s

R e lia b il i tyR e l ia b i l ity

E ff ic ie n c yE ff ic ie n c y

In te g ri tyIn te g r ity

U s a b il i tyU s a b il i ty

P R O D U C T T R A N S IT IO NP R O D U C T T R A N S IT IO NP R O D U C T R E V IS IO NP R O D U C T R E V IS IO N

P R O D U C T O P E R A T IO NP R O D U C T O P E R A T IO N

A Framework for Product
Metrics

• A measure provides a quantitative indication of the extent, amount,

dimension, capacity, or size of some attribute of a product or

process

• The IEEE glossary defines a metric as “a quantitative measure of

the degree to which a system, component, or process possesses a

given attribute.”

• An indicator is a metric or combination of metrics that provide insight

into the software process, a software project, or the product itself

Goal-Oriented Software Measurement

A Framework for Product
Metrics

Metrics Attributes

• Simple and computable. It should be relatively easy to learn how to derive the
metric, and its computation should not demand inordinate effort or time

• Empirically and intuitively persuasive. The metric should satisfy the engineer’s
intuitive notions about the product attribute under consideration

• Consistent and objective. The metric should always yield results that are
unambiguous.

• Consistent in its use of units and dimensions. The mathematical computation of the
metric should use measures that do not lead to bizarre combinations of unit.

• Programming language independent. Metrics should be based on the analysis
model, the design model, or the structure of the program itself.

• Effective mechanism for quality feedback. That is, the metric should provide a
software engineer with information that can lead to a higher quality end product

A Framework for Product
Metrics

Metrics Attributes
• Simple and computable. It should be relatively easy to learn how to derive the metric, and its

computation should not demand inordinate effort or time

• Empirically and intuitively persuasive. The metric should satisfy the engineer’s intuitive notions
about the product attribute under consideration

• Consistent and objective. The metric should always yield results that are unambiguous.

• Consistent in its use of units and dimensions. The mathematical computation of the metric should
use measures that do not lead to bizarre combinations of unit.

• Programming language independent. Metrics should be based on the analysis model, the design
model, or the structure of the program itself.

• Effective mechanism for quality feedback. That is, the metric should provide a software engineer
with information that can lead to a higher quality end product

Metrics for the Requirements
Model

• Function-based metrics: use the function point as

a normalizing factor or as a measure of the “size” of

the specification

• Specification metrics: used as an indication of

quality by measuring number of requirements by

type

Metrics for the Requirements
Model

Function-Based Metrics

• The function point metric (FP), first proposed by Albrecht [ALB79], can be used effectively as a
means for measuring the functionality delivered by a system.

• Function points are derived using an empirical relationship based on countable (direct)
measures of software's information domain and assessments of software complexity

• Information domain values are defined in the following manner:

– number of external inputs (EIs)

– number of external outputs (EOs)

– number of external inquiries (EQs)

– number of internal logical files (ILFs)

– Number of external interface files (EIFs)

Metrics for the Requirements
Model

Function Points

In formation

Domain Value Count simple average complex

Weighting factor

External Inputs (EI s)

External Outputs (EOs)

External Inquiries (EQs)

Internal Logical Files (ILFs)

External Interf ace Files (EIFs)

3 4 6

4 5 7

3 4 6

7 10 15

5 7 10

=

=

=

=

=

Count total

3

3

3

3

3

Metrics for the Design Model

Architectural Design Metrics

• Architectural design metrics

– Structural complexity = g(fan-out)

– Data complexity = f(input & output variables, fan-out)

– System complexity = h(structural & data complexity)

• HK metric: architectural complexity as a function of fan-in and

fan-out

• Morphology metrics: a function of the number of modules and

the number of interfaces between modules

Metrics for the Design Model

Metrics for OO Design-I
Whitmire [Whi97] describes nine distinct and measurable characteristics of an OO design:

• Size

– Size is defined in terms of four views: population, volume, length, and functionality

• Complexity

– How classes of an OO design are interrelated to one another

• Coupling

– The physical connections between elements of the OO design

• Sufficiency

– “the degree to which an abstraction possesses the features required of it, or the
degree to which a design component possesses features in its abstraction, from the
point of view of the current application.”

Metrics for the Design Model

Metrics for OO Design-II
• Completeness

– An indirect implication about the degree to which the abstraction or design
component can be reused

• Cohesion

– The degree to which all operations working together to achieve a single, well-
defined purpose

• Primitiveness

– Applied to both operations and classes, the degree to which an operation is atomic

• Similarity

– The degree to which two or more classes are similar in terms of their structure,
function, behavior, or purpose

• Volatility

– Measures the likelihood that a change will occur

Metrics for the Design Model

Class-Oriented Metrics

• weighted methods per class

• depth of the inheritance tree

• number of children

• coupling between object classes

• response for a class

• lack of cohesion in methods

Proposed by Chidamber and Kemerer [Chi94]:

Metrics for the Design Model

Class-Oriented Metrics

• class size

• number of operations overridden by a subclass

• number of operations added by a subclass

• specialization index

Proposed by Lorenz and Kidd [Lor94]:

Metrics for the Design Model

Class-Oriented Metrics

• Method inheritance factor

• Coupling factor

• Polymorphism factor

The MOOD Metrics Suite [Har98b]:

Metrics for the Design Model

Class-Oriented Metrics

• average operation size

• operation complexity

• average number of parameters per operation

Proposed by Lorenz and Kidd [Lor94]:

Metrics for the Design Model

Component-Level Design Metrics

• Cohesion metrics: a function of data objects and

the locus of their definition

• Coupling metrics: a function of input and output

parameters, global variables, and modules called

• Complexity metrics: hundreds have been

proposed (e.g., cyclomatic complexity)

Metrics for the Design Model

Interface Design Metrics

• Layout appropriateness: a function of layout

entities, the geographic position and the “cost” of

making transitions among entities

Design Metrics
for Web and Mobile Apps

• Does the user interface promote usability?
• Are the aesthetics of the WebApp appropriate for the application domain and

pleasing to the user?

• Is the content designed in a manner that imparts the most information with the
least effort?

• Is navigation efficient and straightforward?

• Has the WebApp architecture been designed to accommodate the special goals
and objectives of WebApp users, the structure of content and functionality, and
the flow of navigation required to use the system effectively?

• Are components designed in a manner that reduces procedural complexity and
enhances the correctness, reliability and performance?

Code Metrics

• Halstead’s Software Science: a comprehensive
collection of metrics all predicated on the number
(count and occurrence) of operators and operands
within a component or program

– It should be noted that Halstead’s “laws” have
generated substantial controversy, and many believe
that the underlying theory has flaws. However,
experimental verification for selected programming
languages has been performed (e.g. [FEL89]).

Metrics for Testing

• Testing effort can also be estimated using metrics
derived from Halstead measures

• Binder [Bin94] suggests a broad array of design
metrics that have a direct influence on the
“testability” of an OO system.

– Lack of cohesion in methods (LCOM).

– Percent public and protected (PAP).

– Public access to data members (PAD).

– Number of root classes (NOR).

– Fan-in (FIN).

– Number of children (NOC) and depth of the
inheritance tree (DIT).

Maintenance Metrics

• IEEE Std. 982.1-1988 [IEE94] suggests a software maturity index
(SMI) that provides an indication of the stability of a software product
(based on changes that occur for each release of the product). The
following information is determined:

• MT = the number of modules in the current release

• Fc = the number of modules in the current release
that have been changed

• Fa = the number of modules in the current release
that have been added

• Fd = the number of modules from the preceding release
that were deleted in the current release

• The software maturity index is computed in the following manner:

• SMI = [MT - (Fa + Fc + Fd)]/MT

• As SMI approaches 1.0, the product begins to stabilize.

Metrics in the Process
and Project Domain

process

measurement

What do we

use as a

basis?

• size?

• function?

project metrics

process metrics

product

product metrics

A Good Manager Measures

Metrics in the Process
and Project Domain

Process Measurement
• We measure the efficacy of a software process indirectly.

– That is, we derive a set of metrics based on the outcomes that can be
derived from the process.

– Outcomes include

• measures of errors uncovered before release of the software

• defects delivered to and reported by end-users

• work products delivered (productivity)

• human effort expended

• calendar time expended

• schedule conformance

• other measures.

• We also derive process metrics by measuring the characteristics of specific
software engineering tasks.

Metrics in the Process
and Project Domain

Software Process Improvement

SPI

Process model

Improvement goals

Process metrics

Process improvement
recommendations

Metrics in the Process
and Project Domain

Process Metrics
• Quality-related

• focus on quality of work products and deliverables

• Productivity-related
• Production of work-products related to effort expended

• Statistical SQA data
• error categorization & analysis

• Defect removal efficiency
• propagation of errors from process activity to activity

• Reuse data
• The number of components produced and their degree of reusability

Metrics in the Process
and Project Domain

Project Metrics
• used to minimize the development schedule by making the adjustments necessary to avoid delays

and mitigate potential problems and risks

• used to assess product quality on an ongoing basis and, when necessary, modify the technical
approach to improve quality.

• every project should measure:

• inputs—measures of the resources (e.g., people, tools) required to do the work.

• outputs—measures of the deliverables or work products created during the software engineering
process.

• results—measures that indicate the effectiveness of the deliverables.

Metrics in the Process
and Project DomainTypical Project Metrics

• Effort/time per software engineering task

• Errors uncovered per review hour

• Scheduled vs. actual milestone dates

• Changes (number) and their characteristics

• Distribution of effort on software engineering tasks

Software Measurement

Typical Size-Oriented Metrics
• errors per KLOC (thousand lines of code)

• defects per KLOC

• $ per LOC

• pages of documentation per KLOC

• errors per person-month

• errors per review hour

• LOC per person-month

• $ per page of documentation

Software Measurement

Typical Function-Oriented Metrics

• errors per FP (thousand lines of code)

• defects per FP

• $ per FP

• pages of documentation per FP

• FP per person-month

Software Measurement

Comparing LOC and FP
Programming LOC per Function point

Language avg. median low high

Ada 154 - 104 205

Assembler 337 315 91 694

C 162 109 33 704
C++ 66 53 29 178

COBOL 77 77 14 400

Java 63 53 77 -

JavaScript 58 63 42 75

Perl 60 - - -

PL/1 78 67 22 263
Powerbuilder 32 31 11 105

SAS 40 41 33 49

Smalltalk 26 19 10 55
SQL 40 37 7 110

Visual Basic 47 42 16 158

Representative values developed by QSM

Software Measurement
Why Opt for FP?

• Programming language independent

• Used readily countable characteristics that are determined early in the software
process

• Does not “penalize” inventive (short) implementations that use fewer LOC that
other more clumsy versions

• Makes it easier to measure the impact of reusable components

Software Measurement
Object-Oriented Metrics

• Number of scenario scripts (use-cases)

• Number of support classes (required to implement the system but are not
immediately related to the problem domain)

• Average number of support classes per key class (analysis class)

• Number of subsystems (an aggregation of classes that support a function that is
visible to the end-user of a system)

Software Measurement

WebApp Project Metrics
• Number of static Web pages (the end-user has no control over the content displayed on the page)

• Number of dynamic Web pages (end-user actions result in customized content displayed on the
page)

• Number of internal page links (internal page links are pointers that provide a hyperlink to some
other Web page within the WebApp)

• Number of persistent data objects

• Number of external systems interfaced

• Number of static content objects

• Number of dynamic content objects

• Number of executable functions

Metrics for
Software QualityMeasuring Quality

• Correctness — the degree to which a program operates according to specification

• Maintainability —the degree to which a program is amenable to change

• Integrity —the degree to which a program is impervious to outside attack

• Usability —the degree to which a program is easy to use

Metrics for
Software Quality

Defect Removal Efficiency

where:

E is the number of errors found before

delivery of the software to the end-user

D is the number of defects found after delivery.

DRE = E /(E + D)

Case Study

In the practical software development, the example of the software measurements
are commonly used:

• TPS (Transaction Per Second)

• Throughput

• Availability of the system, example: 99% availability per months

• The monitoring tools is needed effectively to monitor the measurement

Case Study

Please give the other examples the measurement and target in your organization
software development.

References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th ed. McGraw-Hill
Companies.Inc, Americas, New York. ISBN : 978 1 259 253157.

• Project Management

http://www.pricesystems.com/resources/mf_risks_remedies_facts.asp

• Project Portfolio Management

http://www.daptiv.com/index.htm

• SW Metrics

http://www.spc.ca/resources/metrics/

• Function Point Measurement

http://www.functionpoints.com

• SW Metrics service Estimation
http://www.charismatek.com/_public4/html/services/pdf/service_estimate.pdf

http://www.pricesystems.com/resources/mf_risks_remedies_facts.asp
http://www.daptiv.com/index.htm
http://www.spc.ca/resources/metrics/
http://www.functionpoints.com/
http://www.charismatek.com/_public4/html/services/pdf/service_estimate.pdf

Q & A

