
Software Engineering

Topic 6

Application Testing and
Security Engineering

Acknowledgement

These slides have been adapted from

Pressman, R.S. (2015). Software

Engineering : A Practioner's Approach. 8th

ed. McGraw-Hill Companies.Inc, Americas,

New York. ISBN 978 1 259 253157.

Chapter 23, 24, 25, 26, and 27

Learning Objectives

LO 3 : Demonstrate the quality

assurances and the potential

showcase business project

Contents

• Testing Conventional Applications

• Testing Object Oriented Applications

• Testing Web Applications

• Testing Mobile Applications

• Security Engineering

Testing Conventional
Applications

Software Testing Fundamentals : Testability

• Operability —it operates cleanly

• Observability —the results of each test case are readily observed

• Controllability —the degree to which testing can be automated and

optimized

• Decomposability —testing can be targeted

• Simplicity —reduce complex architecture and logic to simplify tests

• Stability —few changes are requested during testing

• Understandability —of the design

Testing Conventional
Applications

What is a “Good” Test?

• A good test has a high probability of finding an

error

• A good test is not redundant.

• A good test should be “best of breed”

• A good test should be neither too simple nor

too complex

Testing Conventional
Applications

• Any engineered product (and most other things) can be tested in one of
two ways:

• Knowing the specified function that a product has been designed to
perform, tests can be conducted that demonstrate each function is
fully operational while at the same time searching for errors in each
function;

• Knowing the internal workings of a product, tests can be conducted to
ensure that "all gears mesh," that is, internal operations are performed
according to specifications and all internal components have been
adequately exercised.

Internal and External Views of Testing

Testing Conventional
Applications

Exhaustive Testing

test per millisecond, it would take 3,170 years to

loop < 20 X

Testing Conventional
Applications

Selective Testing

loop < 20 X

Selected path

Testing Conventional
Applications

Software Testing

Methods

Strategies

white-box

methods

black-box

methods

Testing Conventional
Applications

White-Box Testing

... our goal is to ensure that all

statements and conditions have

been executed at least once ...

Testing Conventional
Applications

White-Box Testing

logic errors and incorrect assumptions

are inversely proportional to a path's

execution probability

we often believe that a path is not

likely to be executed; in fact, reality is

often counter intuitive

typographical errors are random; it's

likely that untested paths will contain

some

Testing Conventional
Applications

First, we compute the cyclomatic

complexity:

or

number of enclosed areas + 1

In this case, V(G) = 4

Testing Conventional
Applications

Cyclomatic Complexity

A number of industry studies have indicated
that the higher V(G), the higher the probability
or errors.

V(G)

modules

modules in this range are
more error prone

Testing Conventional
Applications

Basis Path Testing

Next, we derive the
independent paths:

Since V(G) = 4,
there are four paths

Path 1: 1,2,3,6,7,8

Path 2: 1,2,3,5,7,8

Path 3: 1,2,4,7,8

Path 4: 1,2,4,7,2,4,...7,8

Finally, we derive test
cases to exercise these
paths.

1

2

3
4

5 6

7

8

Testing Conventional
Applications

Basis Path Testing Notes

you don't need a flow chart,

but the picture will help when

you trace program paths

count each simple logical test,

compound tests count as 2 or

more

basis path testing should be

applied to critical modules

Testing Conventional
Applications

Basis Path Testing - Graph Matrices

• A graph matrix is a square matrix whose size (i.e.,
number of rows and columns) is equal to the number of
nodes on a flow graph

• Each row and column corresponds to an identified node,
and matrix entries correspond to connections (an edge)
between nodes.

• By adding a link weight to each matrix entry, the graph
matrix can become a powerful tool for evaluating
program control structure during testing

Testing Conventional
Applications

Control Structure Testing
• Condition testing — a test case design method

that exercises the logical conditions contained in

a program module

• Data flow testing — selects test paths of a

program according to the locations of definitions

and uses of variables in the program

Testing Conventional
Applications

Nested
Loops

Concatenated

Loops Unstructured

Loops

Simple
loop

Testing Conventional
Applications

Black-Box Testing

requirements

eventsinput

output

Testing Conventional
Applications

Black-Box Testing
• How is functional validity tested?

• How is system behavior and performance tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundaries of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system
operation?

Testing Conventional
Applications

Graph-Based Methods

new

file

menu select generates

(generation time  1.0 sec)

document

window

document

tex
t

is represented as

contains

Attributes:

background color: white

text color: default color
 or preferences

(b)

object
#1

Directed link

(link weight)

object
#2

object

#
3

Undirected link

Parallel links

Node weight
(value

)

(a)

allows editing
of

To understand the objects

that are modeled in

software and the

relationships that connect

these objects

In this context, we consider

the term “objects” in the

broadest possible context. It

encompasses data objects,

traditional components

(modules), and object-

oriented elements of

computer software.

Testing Conventional
Applications

Orthogonal Array Testing

• Used when the number of input parameters is small and

the values that each of the parameters may take are clearly

bounded

One input item at a t ime L9 orthogonal array

XY

Z

X
Y

Z

Testing Object
Oriented Application

• To adequately test OO systems, three things

must be done:

– the definition of testing must be broadened

to include error discovery techniques applied

to object-oriented analysis and design

models

– the strategy for unit and integration testing

must change significantly, and

– the design of test cases must account for the

unique characteristics of OO software.

Testing Object
Oriented Application

‘Testing’ OO Models

• The review of OO analysis and design models is especially

useful because the same semantic constructs (e.g., classes,

attributes, operations, messages) appear at the analysis,

design, and code level

• Therefore, a problem in the definition of class attributes that

is uncovered during analysis will circumvent side affects that

might occur if the problem were not discovered until design

or code (or even the next iteration of analysis).

Testing Object Oriented
Application

Correctness of OO Models
• During analysis and design, semantic correctness can be asesssed

based on the model’s conformance to the real world problem domain.

• If the model accurately reflects the real world (to a level of detail that is
appropriate to the stage of development at which the model is reviewed)
then it is semantically correct.

• To determine whether the model does, in fact, reflect real world
requirements, it should be presented to problem domain experts who
will examine the class definitions and hierarchy for omissions and
ambiguity.

• Class relationships (instance connections) are evaluated to determine
whether they accurately reflect real-world object connections.

Testing Object Oriented
Application

Class Model Consistency

• Revisit the CRC model and the object-relationship model.

• Inspect the description of each CRC index card to determine if a delegated
responsibility is part of the collaborator’s definition.

• Invert the connection to ensure that each collaborator that is asked for service is
receiving requests from a reasonable source.

• Using the inverted connections examined in the preceding step, determine
whether other classes might be required or whether responsibilities are properly
grouped among the classes.

• Determine whether widely requested responsibilities might be combined into a
single responsibility.

Testing Object Oriented
Application

OO Testing Strategies

• Unit testing

– the concept of the unit changes

– the smallest testable unit is the encapsulated class

– a single operation can no longer be tested in isolation (the conventional view of unit
testing) but rather, as part of a class

• Integration Testing

– Thread-based testing integrates the set of classes required to respond to one input or
event for the system

– Use-based testing begins the construction of the system by testing those classes
(called independent classes) that use very few (if any) of server classes. After the
independent classes are tested, the next layer of classes, called dependent classes

– Cluster testing defines a cluster of collaborating classes (determined by examining the
CRC and object-relationship model) is exercised by designing test cases that attempt to
uncover errors in the collaborations.

Testing Object
Oriented Application

OOT Methods
Berard [Ber93] proposes the following approach:

1. Each test case should be uniquely identified and should be explicitly

associated with the class to be tested

2. The purpose of the test should be stated.

3. A list of testing steps should be developed for each test and should

contain:

a. a list of specified states for the object that is to be tested

b. a list of messages and operations that will be exercised as a on

sequence of the test

c. a list of exceptions that may occur as the object is tested

d. a list of external conditions (i.e., changes in the environment

external to the software that must exist in order to properly conduct

the test)

e. supplementary information that will aid in understanding or

implementing the test.

Testing Object Oriented
Application

Testing Methods

• Fault-based testing

– The tester looks for plausible faults (i.e., aspects of the implementation of

the system that may result in defects). To determine whether these faults

exist, test cases are designed to exercise the design or code.

• Class Testing and the Class Hierarchy

– Inheritance does not obviate the need for thorough testing of all derived

classes. In fact, it can actually complicate the testing process.

• Scenario-Based Test Design

– Scenario-based testing concentrates on what the user does, not what the

product does. This means capturing the tasks (via use-cases) that the user

has to perform, then applying them and their variants as tests.

Testing Object
Oriented Application

OOT Methods: Random Testing

• Random testing

– identify operations applicable to a class

– define constraints on their use

– identify a minimum test sequence

• an operation sequence that defines the minimum

life history of the class (object)

– generate a variety of random (but valid) test

sequences

• exercise other (more complex) class instance life

histories

Testing Object
Oriented Application

OOT Methods: Partition Testing
• Partition Testing

– reduces the number of test cases required to test a class
in much the same way as equivalence partitioning for
conventional software

– state-based partitioning

• categorize and test operations based on their ability to
change the state of a class

– attribute-based partitioning

• categorize and test operations based on the attributes
that they use

– category-based partitioning

• categorize and test operations based on the generic
function each performs

Testing Object
Oriented Application

OOT Methods: Inter-Class Testing

• Inter-class testing

– For each client class, use the list of class operators
to generate a series of random test sequences. The
operators will send messages to other server
classes.

– For each message that is generated, determine the
collaborator class and the corresponding operator in
the server object.

– For each operator in the server object (that has been
invoked by messages sent from the client object),
determine the messages that it transmits.

– For each of the messages, determine the next level
of operators that are invoked and incorporate these
into the test sequence

Testing Object
Oriented Application

OOT Methods: Behavior Testing

empty

acctopen setup Accnt

set up

acct

deposit
(initial)

working

acct

withdrawal
(final)

dead
acct close

nonworking
acct

deposit

withdraw
balance

credit

accntInfo

Figure 14.3 St at e diagram f or Account class (adapt ed f rom [KIR94])

The tests to be designed
should achieve all state
coverage [KIR94].

That is, the operation
sequences should cause
the account class to
make transition through
all allowable states

Testing Web
Applications

• Content is evaluated at both a syntactic and semantic level.

• syntactic level

• semantic level
• Function is tested for correctness, instability, and general conformance to appropriate implementation standards

(e.g.,Java or XML language standards).

• Structure is assessed to ensure that it

• properly delivers WebApp content and function

• is extensible

• can be supported as new content or functionality is added.
• Usability is tested to ensure that each category of user

• is supported by the interface
• can learn and apply all required navigation syntax and semantics

• Navigability is tested to ensure that

• all navigation syntax and semantics are exercised to uncover any navigation errors (e.g., dead links,
improper links, erroneous links).

Testing Quality Dimensions-I

Testing Web
Applications

Testing Quality Dimensions-II

• Performance is tested under a variety of operating conditions,
configurations, and loading to ensure that

– the system is responsive to user interaction

– the system handles extreme loading without unacceptable
operational degradation

• Compatibility is tested by executing the WebApp in a variety of different
host configurations on both the client and server sides.
– The intent is to find errors that are specific to a unique host

configuration.

• Interoperability is tested to ensure that the WebApp properly interfaces
with other applications and/or databases.

• Security is tested by assessing potential vulnerabilities and attempting to
exploit each.
– Any successful penetration attempt is deemed a security failure.

Testing Web
Applications

The Testing Process

Interface

design

Aesthet ic design

Content design

Navigat ion design

Architecture design

Component design

user

technology

Co nt ent

T est ing

Int erf ace

Test ing

Co mp onent

Test ing

Navig at ion

Test ing

Perf o rmance

T est ing

Conf ig urat io n

Test ing

Secur it y

Test ing

Testing Web
Applications

Content Testing

• Content testing has three important objectives:

– to uncover syntactic errors (e.g., typos, grammar mistakes) in

text-based documents, graphical representations, and other

media

– to uncover semantic errors (i.e., errors in the accuracy or

completeness of information) in any content object presented

as navigation occurs, and

– to find errors in the organization or structure of content that is

presented to the end-user.

Testing Web
Applications

• Is the information factually accurate?
• Is the information concise and to the point?

• Is the layout of the content object easy for the user to understand?

• Can information embedded within a content object be found easily?

• Have proper references been provided for all information derived from other sources?

• Is the information presented consistent internally and consistent with information presented in other content
objects?

• Is the content offensive, misleading, or does it open the door to litigation?

• Does the content infringe on existing copyrights or trademarks?

• Does the content contain internal links that supplement existing content? Are the links correct?

• Does the aesthetic style of the content conflict with the aesthetic style of the interface?

Assessing Content Semantics

Testing Web
Applications

c lient layer - user int erface

server layer - WebApp

server layer - dat a t ransform at ion

dat abase layer - dat a access

server layer - dat a m anagem ent

dat abase

HTML script s

user dat a SQL

user dat a

SQLraw dat a

Tests are defined for
each layer

Database Testing

Testing Web Applications

User Interface Testing

• Interface features are tested to ensure that design rules, aesthetics,

and related visual content is available for the user without error.

• Individual interface mechanisms are tested in a manner that is

analogous to unit testing.

• Each interface mechanism is tested within the context of a use-case

or NSU for a specific user category.

• The complete interface is tested against selected use-cases and NSUs

to uncover errors in the semantics of the interface.

• The interface is tested within a variety of environments (e.g.,

browsers) to ensure that it will be compatible.

Testing Web Applications

Testing Guidelines
• Understand the network and device landscape before testing to identify

bottlenecks

• Conduct tests in uncontrolled real-world test condition (filed-based testing)

• Select the right automation test tool

• Use the Weighted Device Platform Matrix method to identify the most critical

hardware/platform combination to test

• Check the end-to-end functional flow in all possible platforms at least once

• Conduct performance testing, GUI testing, and compatibility testing using

actual devices

• Measure performance only in realistic conditions of wireless and user load

Testing Web Applications

Testing Strategies
• Developing a MobileApp testing strategy requires an understanding of both software

testing and the challenges that make mobile devices and their network infrastucture

unique.

• In addition to a thorough knowledge of conventional software testing approach, a

MobileApp tester should have a good understanding of telecommunications

principles and an awarness of the differences and capabilities of mobile operating

systems platforms.

• This basic knowledge must be complemented with a thorough understanding of the

different types of mobile testing (e.g. MobileApp testing, mobile handset testing,

mobile website testing), the use of simulators, test automations tools, and remote data

access services (RDA).

Testing Mobile
Applications

Criteria Testing Tools and Environments

• Object identification

• Security

• Devices

• Functionality

• Emulators and plug-ins

• Connectivity

Security Engineering

Analyzing Security Requirements

• An important part of building secure systems is anticipating

conditions or threats that may be used to damage system

resources or render them inaccessible to authorized users.

• This process is called threat analysis.

• Once the system assets, vulnerabilities, and threats have

been identified, controls can be created to either avoid

attacks or mitigate their damage.

Security Engineering

Analyzing Security Requirements

• Software security is an essential prerequisite for software

integrity, availability, reliability, and safety

• It may not possible to create a system that can be defend its

assets againt all possible threats, and for that reason, it may

be necessary to encourage users to maintain backup copies

of critical data, redundant system component, and ensure

privacy controls are in place

Security Engineering

Security and Privacy in an Online World
• Social Media

• Mobile Applications

• Cloud Computing

• The Internet of Things

Security Engineering

Security Risk Analysis
• Identify assets

• Create an architecture overview

• Decompose the application

• Identify threats

• Documented the threats

• Rate the threats

Case Study

• In some organization, they have a special QA/QC

department who manage and control the testing

process. They are responsible for performing the test

• The test can involve the related team and stakeholder

of the application

• The process will start for creating the test plan

• The User Acceptance Test (UAT) is the minimum test

to ensure the application can be used in the

production environment

References

• Pressman, R.S. (2015). Software Engineering : A Practioner's

Approach. 8th ed. McGraw-Hill Companies.Inc, Americas, New York. ISBN

: 978 1 259 253157.

• Software Testing,

http://www.youtube.com/watch?v=caElFKbceP0&list=PLED41984073D

5B532

• Conventional sw testing http://www.testingexcellence.com/conventional-

software-testing-on-an-extreme-programming-team/

• Testing OO SW

http://diwww.epfl.ch/researchlgl/research/ongoing/testing.html

• Web testing

http://www.manageengine.com/products/qengine/web-testing.html

http://www.youtube.com/watch?v=caElFKbceP0&list=PLED41984073D5B532
http://www.testingexcellence.com/conventional-software-testing-on-an-extreme-programming-team/
http://diwww.epfl.ch/researchlgl/research/ongoing/testing.html
http://www.manageengine.com/products/qengine/web-testing.html

Q & A

