
Software Engineering

Topic 4

Design Engineering

Acknowledgement

These slides have been adapted from
Pressman, R.S. (2015). Software Engineering : A Practioner's
Approach. 8th ed. McGraw-Hill Companies.Inc, Americas, New York.
ISBN : 978 1 259 253157. Chapter 12, 13, 14, 15, 16, 17, and 18

Learning Objectives

LO2 : Explain the software engineering
practices and business environment

Contents

• Software Architecture

• Architectural Design

• Component Level Design

• Interface Design

• Design Evaluation Cycle

• Design Patterns

• Architectural Patterns

• WebApps Design

• MobileApps Design

SOFTWARE ARCHITECTURE

Software Architecture

The architecture is not the operational software.
Rather, it is a representation that enables a
software engineer to:

(1) analyze the effectiveness of the design in
meeting its stated requirements,

(2) consider architectural alternatives at a stage
when making design changes is still relatively
easy, and

(3) reduce the risks associated with the
construction of the software.

Software Architecture

• Data-centered architectures

• Data flow architectures

• Call and return architectures

• Object-oriented architectures

• Layered architectures

Architectural Styles
Each style describes a system category that encompasses: (1) a set of components
(e.g., a database, computational modules) that perform a function required by a
system, (2) a set of connectors that enable “communication, coordination and
cooperation” among components, (3) constraints that define how components can be
integrated to form the system, and (4) semantic models that enable a designer to
understand the overall properties of a system by analyzing the known properties of its
constituent parts.

Software Architecture

Data Flow

Architecture

Data Centered

Architecture

Software Architecture

Layered

Architecture

Call and Return

Architecture

ARCHITECTURAL DESIGN

Architectural Design

• The software must be placed into context

• the design should define the external entities (other systems,
devices, people) that the software interacts with and the nature of
the interaction

• A set of architectural archetypes should be identified

• An archetype is an abstraction (similar to a class) that represents
one element of system behavior

• The designer specifies the structure of the system by defining and
refining software components that implement each archetype

Architectural Design

Architectural Context

target sy stem:

Security Function
uses

uses peershomeowner

Saf ehome

Product
Internet -based

sy stem

surv eillance

f unct ion

sensors

control

panel

sensors

uses

Architectural Design

Archetypes

Figure 10.7 UML relat ionships for SafeHome security funct ion archetypes

(adapted f rom [BOS00])

Cont roller

Node

communicates with

Detector Indicator

Architectural Design

Component Structure

SafeHome

Execut ive

Ext ernal

Communicat ion

Management

GUI Int ernet

Int erface

Funct ion

select ion

Securit y Surveillance Home

management

Cont rol

panel

processing

det ect or

management

alarm

processing

Architectural Design

Refined Component Structure

sensor
sensor

sensor
sensor

sensor
sensor
sensor

sensor

Ext ernal

Communicat ion

Management

GUI Internet

Interface

Security

Cont ro l

pane l

processing

det ect or

m anagem ent

alarm

processing

Key pad

processing

CP d isp lay

funct ions

scheduler

sensor
sensor
sensor
sensor

phone

com m unicat ion

alarm

SafeHome

Execut ive

COMPONEN LEVEL DESIGN

Component Level Design

• OMG Unified Modeling Language Specification [OMG01]
defines a component as

• “… a modular, deployable, and replaceable part of a
system that encapsulates implementation and exposes a
set of interfaces.”

• OO view: a component contains a set of collaborating
classes

• Conventional view: a component contains processing logic,
the internal data structures that are required to implement
the processing logic, and an interface that enables the
component to be invoked and data to be passed to it.

Component Level Design

OO Component

Prin t Job

c om put eJob

in i t ia t eJob

number Of Pages

number Of Sides

paper Type

 paper Weight

 paper Size

 paper Color

magnif icat ion

color Requir ement s

pr oduct ionFeat ur es

 collat ionOpt ions

 bindingOpt ions

 cover St ock

 bleed

 pr ior it y

t ot alJobCost

WOnumber

PrintJob

comput ePageCost ()

comput ePaper Cost ()

comput ePr odCost ()

comput eTot alJobCost ()

buildWor kOr der ()

checkPr ior it y ()

passJobt o Pr oduct ion()

elaborated design c lass
< < in t er f ace> >

co m p u t eJo b

comput ePageCost ()

comput ePaper Cost ()

comput ePr odCost ()

comput eTot alJobCost ()

< < in t er f ace> >

in it iat eJo b

buildWor kOr der ()

checkPr ior it y ()

passJobt o Pr oduct ion()

design c om ponent

num berOf Pages

num berOf Sides

paperTy pe

m agni f ic at ion

produc t ionFeat ures

Print Job

c om put eJobCost()

passJobt oPrin t er()

analy sis c lass

Component Level Design

Conventional Component

ComputePageCost

design component

accessCostsDB

getJobData

elaborated module

PageCost

in: job size
in: color=1, 2 , 3, 4

in: pageSize = A, B, C, B
out : BPC

out : SF

in: numberPages
in: numberDocs

in: sides= 1, 2
in: color=1, 2, 3, 4

in: page size = A, B, C, B
out : page cost

 job size (JS) =

 num berPages * num berDocs;

lookup base page cost (BPC) -->

 accessCost sDB (JS, co lor) ;

lookup size fact or (SF) -->

 accessCost DB (JS, color, size)

job com plexit y fact or (JCF) =

 1 + [(sides-1) * sideCost + SF]

pagecost = BPC * JCF

get JobDat a (num berPages, num berDocs,

sides, co lor, pageSize, pageCost)

accessCost sDB (jobSize, co lor, pageSize,

BPC, SF)

com put ePageCost()

Component Level Design

• Conventional view:
• the “single-mindedness” of a module

• OO view:
• cohesion implies that a component or class encapsulates only

attributes and operations that are closely related to one another
and to the class or component itself

• Levels of cohesion
• Functional
• Layer
• Communicational
• Sequential
• Procedural
• Temporal
• utility

Cohesion

Component Level Design

Coupling
• Conventional view:

– The degree to which a component is connected to other components and
to the external world

• OO view:

– a qualitative measure of the degree to which classes are connected to one
another

• Level of coupling

– Content

– Common

– Control

– Stamp

– Data

– Routine call

– Type use

– Inclusion or import

– External

Component Level Design

• WebApp component is
• (1) a well-defined cohesive function that manipulates

content or provides computational or data processing for
an end-user, or

• (2) a cohesive package of content and functionality that
provides end-user with some required capability.

• Therefore, component-level design for WebApps often
incorporates elements of content design and functional
design.

Component Design for WebApps

Component Level Design

Component-Based Development

• When faced with the possibility of reuse, the software team
asks:

– Are commercial off-the-shelf (COTS) components available
to implement the requirement?

– Are internally-developed reusable components available to
implement the requirement?

– Are the interfaces for available components compatible
within the architecture of the system to be built?

• At the same time, they are faced with the following
impediments to reuse ...

Component Level Design

• User model — a profile of all end users of the system

• Design model — a design realization of the user model

• Mental model (system perception) — the user’s mental
image of what the interface is

• Implementation model — the interface “look and feel”
coupled with supporting information that describe
interface syntax and semantics

User Interface Design Models

INTERFACE DESIGN

Interface Design

User Interface Design Process

Interface Design

• Interface analysis means understanding

(1) the people (end-users) who will interact with the
system through the interface;

(2) the tasks that end-users must perform to do their
work,

(3) the content that is presented as part of the interface

(4) the environment in which these tasks will be
conducted.

Interface Analysis

Interface Design

• Answers the following questions …
• What work will the user perform in specific circumstances?
• What tasks and subtasks will be performed as the user does the

work?
• What specific problem domain objects will the user manipulate as

work is performed?
• What is the sequence of work tasks—the workflow?
• What is the hierarchy of tasks?

• Use-cases define basic interaction

• Task elaboration refines interactive tasks

• Object elaboration identifies interface objects (classes)

• Workflow analysis defines how a work process is
completed when several people (and roles) are involved

Task Analysis and Modeling

Interface Design

Swimlane Diagram
pat ient pharmacist physician

r e q u e st s t h at a

p r e scr ip t io n b e r e f ille d

no ref ills

remaining

ch e cks p at ie n t

r e co r d s

d e t e r m in e s st at u s o f

p r e scr ip t io n

ref ills

remaining

ref ill not

allowed

approves ref ill

e v alu at e s alt e r n at iv e

m e d icat io n

none

r e ce iv e s r e q u e st t o

co n t act p h y sician

alternat ive

available

ch e cks in v e n t o r y f o r

r e f ill o r alt e r n at iv e

out of stockr e ce iv e s o u t o f st o ck

n o t if icat io n

r e ce iv e s t im e / d at e

t o p ick u p

in stock

p icks u p

p r e scr ip t io n

f ills

p r e scr ip t io n

Figure 12.2 Swimlane d iagram for prescrip t ion refill funct ion

Interface Design

• Using information developed during interface analysis,
define interface objects and actions (operations).

• Define events (user actions) that will cause the state of the
user interface to change. Model this behavior.

• Depict each interface state as it will actually look to the
end-user.

• Indicate how the user interprets the state of the system
from information provided through the interface.

Interface Design Steps

Interface Design

Preliminary screen layout

WEB AND MOBILE INTERFACE DESIGN

WebApp and Mobile
Interface Design

• Anticipation—A WebApp should be designed so that it anticipates
the use’s next move.

• Communication—The interface should communicate the status of
any activity initiated by the user

• Consistency—The use of navigation controls, menus, icons, and
aesthetics (e.g., color, shape, layout)

• Controlled autonomy—The interface should facilitate user
movement throughout the WebApp, but it should do so in a
manner that enforces navigation conventions that have been
established for the application.

• Efficiency—The design of the WebApp and its interface should
optimize the user’s work efficiency, not the efficiency of the Web
engineer who designs and builds it or the client-server
environment that executes it.

Interface Design Principles - I

WebApp and Mobile
Interface Design

• Focus—The WebApp interface (and the content it presents) should
stay focused on the user task(s) at hand.

• Fitt’s Law—“The time to acquire a target is a function of the
distance to and size of the target.”

• Human interface objects—A vast library of reusable human
interface objects has been developed for WebApps.

• Latency reduction—The WebApp should use multi-tasking in a way
that lets the user proceed with work as if the operation has been
completed.

• Learnability— A WebApp interface should be designed to minimize
learning time, and once learned, to minimize relearning required
when the WebApp is revisited.

Interface Design Principles - II

WebApp and Mobile
Interface Design

• Maintain work product integrity—A work product (e.g., a form
completed by the user, a user specified list) must be automatically
saved so that it will not be lost if an error occurs.

• Readability—All information presented through the interface
should be readable by young and old.

• Track state—When appropriate, the state of the user interaction
should be tracked and stored so that a user can logoff and return
later to pick up where she left off.

• Visible navigation—A well-designed WebApp interface provides
“the illusion that users are in the same place, with the work
brought to them.”

Interface Design Principles-III

WebApp and Mobile
Interface Design

• Review information contained in the analysis model and refine
as required.

• Develop a rough sketch of the WebApp interface layout.

• Map user objectives into specific interface actions.

• Define a set of user tasks that are associated with each action.

• Storyboard screen images for each interface action.

• Refine interface layout and storyboards using input from
aesthetic design.

Interface Design Workflow-I

WebApp and Mobile Interface Design

• Identify user interface objects that are required to implement the interface.

• Develop a procedural representation of the user’s interaction with the
interface.

• Develop a behavioral representation of the interface.

• Describe the interface layout for each state.

• Refine and review the interface design model.

Interface Design Workflow-II

WebApp and Mobile Interface Design
The interface design evaluation cycle

object ive #1

object ive #2

object ive #3

object ive #4

object ive #5

object ive #n

List of user object ives

Home page text copy

graphic

graphic, logo, and company name

Navigation

menu

Menu bar

major functions

DESIGN PATTERNS

Design Patterns

Effective Patterns

• Coplien [Cop05] characterizes an effective design pattern in the following way:

• It solves a problem: Patterns capture solutions, not just abstract principles or strategies.

• It is a proven concept: Patterns capture solutions with a track record, not theories or
speculation.

• The solution isn't obvious: Many problem-solving techniques (such as software design
paradigms or methods) try to derive solutions from first principles. The best patterns generate a
solution to a problem indirectly--a necessary approach for the most difficult problems of design.

• It describes a relationship: Patterns don't just describe modules, but describe deeper system
structures and mechanisms.

• The pattern has a significant human component (minimize human intervention). All software
serves human comfort or quality of life; the best patterns explicitly appeal to aesthetics and
utility.

Design Patterns
Generative Patterns

• Generative patterns describe an important and repeatable aspect of a
system and then provide us with a way to build that aspect within a system
of forces that are unique to a given context.

• A collection of generative design patterns could be used to “generate” an
application or computer-based system whose architecture enables it to
adapt to change.

Design Patterns

Describing a Pattern
• Pattern name—describes the essence of the pattern in a short but expressive name

• Problem—describes the problem that the pattern addresses

• Motivation—provides an example of the problem

• Context—describes the environment in which the problem resides including application domain

• Forces—lists the system of forces that affect the manner in which the problem must be solved; includes a
discussion of limitation and constraints that must be considered

• Solution—provides a detailed description of the solution proposed for the problem

• Intent—describes the pattern and what it does

• Collaborations—describes how other patterns contribute to the solution

• Consequences—describes the potential trade-offs that must be considered when the pattern is implemented
and the consequences of using the pattern

• Implementation—identifies special issues that should be considered when implementing the pattern

• Known uses—provides examples of actual uses of the design pattern in real applications

• Related patterns—cross-references related design patterns

Design Patterns

Pattern-Based Design

• A software designer begins with a requirements model (either explicit or
implied) that presents an abstract representation of the system.

• The requirements model describes the problem set, establishes the
context, and identifies the system of forces that hold sway.

• Then …

Design Patterns

Pattern-based design in context

Design Patterns

Pattern Organizing Table

Architectural Patterns

• Example: every house (and every architectural style for houses) employs a
Kitchen pattern.

• The Kitchen pattern and patterns it collaborates with address problems
associated with the storage and preparation of food, the tools required to
accomplish these tasks, and rules for placement of these tools relative to
workflow in the room.

• In addition, the pattern might address problems associated with counter tops,
lighting, wall switches, a central island, flooring, and so on.

• Obviously, there is more than a single design for a kitchen, often dictated by the
context and system of forces. But every design can be conceived within the
context of the ‘solution’ suggested by the Kitchen pattern.

WebApps Design

Design & WebApp Quality

• Security

• Rebuff external attacks

• Exclude unauthorized access

• Ensure the privacy of users/customers

• Availability

• the measure of the percentage of time that a WebApp is available for use

• Scalability

• Can the WebApp and the systems with which it is interfaced handle significant
variation in user or transaction volume

• Time to Market

WEBAPPS DESIGN

WebApps Design

Quality Dimensions for End-Users

• Time

• How much has a Web site changed since the last upgrade?

• How do you highlight the parts that have changed?

• Structural

• How well do all of the parts of the Web site hold together.

• Are all links inside and outside the Web site working?

• Do all of the images work?

• Are there parts of the Web site that are not connected?

• Content

• Does the content of critical pages match what is supposed to be there?

• Do key phrases exist continually in highly-changeable pages?

• Do critical pages maintain quality content from version to version?

• What about dynamically generated HTML pages?

WebApps Design

Quality Dimensions for End-Users

• Accuracy and Consistency

• Are today's copies of the pages downloaded the same as yesterday's? Close enough?

• Is the data presented accurate enough? How do you know?

• Response Time and Latency

• Does the Web site server respond to a browser request within certain parameters?

• In an E-commerce context, how is the end to end response time after a SUBMIT?

• Are there parts of a site that are so slow the user declines to continue working on it?

• Performance

• Is the Browser-Web-Web site-Web-Browser connection quick enough?

• How does the performance vary by time of day, by load and usage?

• Is performance adequate for E-commerce applications?

WebApps Design

Design Pyramid for WebApps

Interf ace

design

Aesthet ic design

Content design

Nav igation design

Architecture design

Component design

user

technology

WebApps Design

Design representation of content objects
ProductComponent

partNumber
partName

partType
description
price

createNewItem ()
displayDescription ()

display TechSpec

Sensor Camera ControlPanel SoftFeature

CompDescript ion

Phot ograph

horizont al dimension

vert ical dimension

border st yle

Schemat ic

horizont al dimension

vert ical dimension

border st yle

Video

horizont al dimension

vert ical dimension

border st yle

audio volume

TechDescript ion

t ext color

f ont st yle

f ont size

line spacing

t ext image size

background color

Market ingDescript ion

t ext color

f ont st yle

f ont size

line spacing

t ext image size

background color

is part of

1

1

1 1..* 0..1 0..1 1

1

MOBILE APPS DESIGN

MobileApp Design

• Like all computing devices, mobile platforms are differentiated by the
software they deliver – a combination of operating system (e.g., Android
or iOS) and a small subset of the hundreds of thousands of MobileApps
that provide a very wide range of functionality.

• New tools allow individuals with little formal training to create and sell
apps alongside other apps developed by large teams of software
developers.

Development Considerations

MobileApp Design

• Multiple hardware and software platforms

• Many development frameworks and programming languages

• Many app store with different rules and tools

• Very short development cycles

• UI limitations and complexities of interaction with sensors and cameras

• Effective use of context

• Power management

• Security and privacy models and policies

• Computational and storage limitations

• Application that depend on external services

• Testing complexity

Technical Considerations

MobileApp Design

• Identify your audience

• Design for context of use

• There is a fine line between simlicity and laziness

• Use the platform as an advantage

• Make scrollbars and selection highlighting more salient

• Increase discoverability of advanced functionality

• Use clear and consistent labels

• Clever icons should never be developed at the expense of user under
standing

• Support user expectations for personalization

• Long scrolling forms trump multiple screens on mobile device

Best Practices

References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th ed. McGraw-
Hill Companies.Inc, Americas, New York. ISBN : 978 1 259 253157.

• Guide to the Software Engineering Body of Knowledge, SWEBOK,
https://www.computer.org/education/bodies-of-knowledge/software-engineering

• UML Specification, https://www.omg.org/spec/UML/About-UML/

• Introduction to Software Architecture, http://www.youtube.com/watch?v=x30DcBfCJRI

• Component-based game engine, http://www.youtube.com/watch?v=_K4Mc3t9Rtc

• software design pattern, http://www.youtube.com/watch?v=ehGl_V61WJw

https://www.computer.org/education/bodies-of-knowledge/software-engineering
http://www.youtube.com/watch?v=x30DcBfCJRI
http://www.youtube.com/watch?v=_K4Mc3t9Rtc
http://www.youtube.com/watch?v=ehGl_V61WJw

Q & A

