
Software Engineering
Topic 3

Requirement Modelling

Acknowledgement

These slides have been adapted from
Pressman, R.S. (2015). Software Engineering : A
Practioner's Approach. 8th ed. McGraw-Hill
Companies.Inc, Americas, New York. ISBN : 978 1
259 253157. Chapter 9, 10, 11 and 12

Learning Objectives

LO 2 : Explain the software engineering
practices and business environment

Contents

• Requirement Analysis

• Eliciting Requirements

• Developing Use Case

• Negotiating Requirements

• Validating Requirements

REQUIREMENT ENGINEERING

Requirement Engineering

• Inception—ask a set of questions that establish …
• basic understanding of the problem
• the people who want a solution
• the nature of the solution that is desired, and
• the effectiveness of preliminary communication and collaboration between

the customer and the developer

• Elicitation—elicit requirements from all stakeholders

• Elaboration—create an analysis model that identifies data, function and
behavioral requirements

• Negotiation—agree on a deliverable system that is realistic for developers and
customers

Requirement Engineering

• Specification—can be any one (or more) of the following:

– A written document

– A set of models

– A formal mathematical

– A collection of user scenarios (use-cases)

– A prototype

• Validation—a review mechanism that looks for

– errors in content or interpretation

– areas where clarification may be required

– missing information

– inconsistencies (a major problem when large products or systems are engineered)

– conflicting or unrealistic (unachievable) requirements.

• Requirements management

Requirement Engineering

Inception

• Identify stakeholders

– “who else do you think I should talk to?”

• Recognize multiple points of view

• Work toward collaboration

• The first questions

– Who is behind the request for this work?

– Who will use the solution?

– What will be the economic benefit of a successful
solution

– Is there another source for the solution that you
need?

Requirement Engineering

Eliciting Requirements

• Meetings are conducted and attended by both software engineers and customers

• Rules for preparation and participation are established

• An agenda is suggested

• A "facilitator" (can be a customer, a developer, or an outsider) controls the meeting

• A "definition mechanism" (can be work sheets, flip charts, or wall stickers or an electronic bulletin
board, chat room or virtual forum) is used

• The goal is

– to identify the problem

– propose elements of the solution

– negotiate different approaches, and

– specify a preliminary set of solution requirements

Requirement Engineering

Eliciting Requirements

Use QFD to

priorit ize

requirem ents

inform ally

priorit ize

requirem ents

form al priorit izat ion?

Create Use-cases

yes no

El ic i t requi rem ent s

write scenario

def ine actors

com plete tem plate

draw use-case

diagram

Conduct FAST

m eet ings

Make lists of

funct ions, c lasses

Make lists of

const raints , etc.

Requirement Engineering

Quality Function Deployment

• Function deployment determines the “value” (as

perceived by the customer) of each function required

of the system

• Information deployment identifies data objects and

events

• Task deployment examines the behavior of the

system

• Value analysis determines the relative priority of

requirements

Requirement Engineering
Elicitation Work Products

• a statement of need and feasibility.

• a bounded statement of scope for the system or product.

• a list of customers, users, and other stakeholders who participated in
requirements elicitation

• a description of the system’s technical environment.

• a list of requirements (preferably organized by function) and the domain
constraints that apply to each.

• a set of usage scenarios that provide insight into the use of the system or product
under different operating conditions.

• any prototypes developed to better define requirements.

BUILDING THE ANALYSIS MODEL

Building the Analysis Model

Elements of the analysis model :

• Scenario-based elements

– Functional—processing narratives for software functions

– Use-case—descriptions of the interaction between an “actor” and the system

• Class-based elements

– Implied by scenarios

• Behavioral elements

– State diagram

• Flow-oriented elements

– Data flow diagram

Building the Analysis Model

Use-Cases
• A collection of user scenarios that describe the thread of usage of a system

• Each scenario is described from the point-of-view of an “actor”—a person or device that interacts with the software
in some way

• Each scenario answers the following questions:

– Who is the primary actor, the secondary actor (s)?

– What are the actor’s goals?

– What preconditions should exist before the story begins?

– What main tasks or functions are performed by the actor?

– What extensions might be considered as the story is described?

– What variations in the actor’s interaction are possible?

– What system information will the actor acquire, produce, or change?

– Will the actor have to inform the system about changes in the external environment?

– What information does the actor desire from the system?

– Does the actor wish to be informed about unexpected changes?

Building the Analysis
Model

Use-Case Diagram

homeowner

Arms/ disarms

syst em

Accesses syst em

via Int ernet

Reconf igures sensors

and relat ed

syst em f eat ures

Responds t o

alarm event

Encount ers an

error condit ion

syst em

administ rat or

sensors

Building the Analysis
Model

Class Diagram

Sensor

name/id

type

location

area

characteristics

identify()

enable()

disable()

reconfigure ()

From the SafeHome system …

Building the Analysis
Model

State Diagram

Reading

Commands

System status = “ready”

Display msg = “enter cmd”

Display status = steady

Entry/subsystems ready

Do: poll user input panel

Do: read user input

Do: interpret user input

State name

State variables

State activities

Analysis Patterns
Pattern name: A descriptor that captures the essence of the pattern.

Intent: Describes what the pattern accomplishes or represents

Motivation: A scenario that illustrates how the pattern can be used to address the problem.

Forces and context: A description of external issues (forces) that can affect how the pattern is used and

also the external issues that will be resolved when the pattern is applied.

Solution: A description of how the pattern is applied to solve the problem with an emphasis on structural

and behavioral issues.

Consequences: Addresses what happens when the pattern is applied and what trade-offs exist during its

application.

Design: Discusses how the analysis pattern can be achieved through the use of known design patterns.

Known uses: Examples of uses within actual systems.

Related patterns: On e or more analysis patterns that are related to the named pattern because (1) it is

commonly used with the named pattern; (2) it is structurally similar to the named pattern; (3) it is a variation

of the named pattern.

Negotiating
Requirements

• Identify the key stakeholders

– These are the people who will be involved in

the negotiation

• Determine each of the stakeholders “win

conditions”

– Win conditions are not always obvious

• Negotiate

– Work toward a set of requirements that lead to

“win-win”

Validating Requirements
• Is each requirement achievable in the technical environment that will

house the system or product?

• Is each requirement testable, once implemented?

• Does the requirements model properly reflect the information, function

and behavior of the system to be built.

• Has the requirements model been “partitioned” in a way that exposes

progressively more detailed information about the system.

• Have requirements patterns been used to simplify the requirements

model. Have all patterns been properly validated? Are all patterns

consistent with customer requirements?

Requirement Analysis

REQUIREMENT MODELING

Scenario-Based Modeling

“[Use-cases] are simply an aid to defining what

exists outside the system (actors) and what

should be performed by the system (use-cases).”

Ivar Jacobson

(1) What should we write about?

(2) How much should we write about it?

(3) How detailed should we make our
description?

(4) How should we organize the description?

Scenario-Based Modeling

Use-Cases

• a scenario that

describes a “thread of

usage” for a system

• actors represent roles

people or devices play

as the system

functions

• users can play a

number of different

roles for a given

scenario

homeowner

Access camera

surveillance via the

Internet

Conf igure SafeHome

system parameters

Set alarm

cameras

SafeHome

Scenario-Based Modeling

Activity Diagram

Supplements the use

case by providing a

graphical

representation of the

flow of interaction

within a specific

scenario

enter password

and user ID

select major funct ion

valid passwor ds/ ID

prompt for reent ry

invalid passwor ds/ ID

input t r ies r em ain

no input

t r ies r em ain

select surveillance

ot her f unct ions

m ay also be

select ed

t hum bnail views select a specif ic cam er a

select camera icon

prompt for

another v iew

select specif ic

camera - thumbnails

exit t his f unct ion
see anot her cam er a

view camera output

in labelled window

Swimlane Diagrams

Allows the modeler to
represent the flow of
activities described by
the use-case and at the
same time indicate
which actor (if there are
multiple actors involved
in a specific use-case)
or analysis class has
responsibility for the
action described by an
activity rectangle

enter password

and user ID

select m ajor funct ion

valid p asswo r d s/ ID

prom pt for reent ry

in valid

p asswo r d s/ ID

in p u t t r ies

r em ain

n o in p u t

t r ies r em ain

select surveillance

o t h er f u n ct io n s

m ay also b e

select ed

t h u m b n ail views select a sp ecif ic cam er a

select cam era icon

generate video

output

select specif ic

cam era - thum bnails

exit t h is

f u n ct io n

see

an o t h er

cam er a

h o m e o w n e r c a m e ra i n t e rf a c e

prom pt for

another v iew

view cam era output

in labelled window

Scenario-Based Modeling

Class-Based Modeling

• Class-based modeling represents:

• objects that the system will manipulate

• operations (also called methods or services) that will be applied to the
objects to effect the manipulation

• relationships (some hierarchical) between the objects

• collaborations that occur between the classes that are defined.

• The elements of a class-based model include classes and objects, attributes,
operations, CRC models, collaboration diagrams and packages.

Identifying Analysis Classes
• Examining the usage scenarios developed as part of the

requirements model and perform a "grammatical parse" [Abb83]
• Classes are determined by underlining each noun or noun

phrase and entering it into a simple table.
• Synonyms should be noted.
• If the class (noun) is required to implement a solution, then it

is part of the solution space; otherwise, if a class is necessary
only to describe a solution, it is part of the problem space.

• But what should we look for once all of the nouns have been
isolated?

Class-Based Modeling

Manifestations of Analysis Classes
Analysis classes manifest themselves in one of the following ways:
• External entities: (e.g., other systems, devices, people) that produce or consume

information
• Things: (e.g, reports, displays, letters, signals) that are part of the information

domain for the problem
• Occurrences or events: (e.g., a property transfer or the completion of a series of

robot movements) that occur within the context of system operation
• Roles: (e.g., manager, engineer, salesperson) played by people who interact with

the system
• Organizational units: (e.g., division, group, team) that are relevant to an

application
• Places: (e.g., manufacturing floor or loading dock) that establish the context of

the problem and the overall function
• Structures: (e.g., sensors, four-wheeled vehicles, or computers) that define a

class of objects or related classes of objects

Class-Based Modeling

Defining Attributes
• Attributes describe a class that has been selected for

inclusion in the analysis model.
• build two different classes for professional baseball

players
• For Playing Statistics software: name, position, batting average,

fielding percentage, years played, and games played might be
relevant

• For Pension Fund software: average salary, credit toward full
vesting, pension plan options chosen, mailing address, and the
like.

Class-Based Modeling

Defining Operations
• Do a grammatical parse of a processing narrative and look at

the verbs

• Operations can be divided into four broad categories:

• (1) operations that manipulate data in some way (e.g.,
adding, deleting, reformatting, selecting)

• (2) operations that perform a computation

• (3) operations that inquire about the state of an object,
and

• (4) operations that monitor an object for the occurrence
of a controlling event.

Class-Based Modeling

CRC Models

• Class-responsibility-collaborator (CRC) modeling [Wir90]
provides a simple means for identifying and organizing the
classes that are relevant to system or product
requirements. Ambler [Amb95] describes CRC modeling in
the following way:

• A CRC model is really a collection of standard index
cards that represent classes. The cards are divided into
three sections. Along the top of the card you write the
name of the class. In the body of the card you list the
class responsibilities on the left and the collaborators on
the right.

Class-Based Modeling

CRC Modeling

Class:

Description:

Responsibili ty: Collaborator:

Class:

Description:

Responsibili ty: Collaborator:

Class:

Description:

Respon sibili ty: Collaborator:

Class: FloorPlan

Description:

Respon sibili ty: Collaborator:

incorporates walls, doors and windows

shows position of video cameras

defines floor plan name/type

manages floor plan positioning

scales floor plan for display

scales floor plan for display

Wall

Camera

Class-Based Modeling

Composite Aggregate Class

Play er

Play erHead Play erArms Play erLegsPlay erBody

Class-Based Modeling

Associations and Dependencies
• Two analysis classes are often related to one another in some

fashion

• In UML these relationships are called associations

• Associations can be refined by indicating multiplicity (the
term cardinality is used in data modeling

• In many instances, a client-server relationship exists between
two analysis classes.

• In such cases, a client-class depends on the server-class
in some way and a dependency relationship is established

Class-Based Modeling

WallSegm ent Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

Dependencies

CameraDisplay Window

{password}

<<access>>

Class-Based Modeling

Multiplicity

Analysis Packages
• Various elements of the analysis model (e.g., use-cases,

analysis classes) are categorized in a manner that packages
them as a grouping

• The plus sign preceding the analysis class name in each
package indicates that the classes have public visibility and
are therefore accessible from other packages.

• Other symbols can precede an element within a package. A
minus sign indicates that an element is hidden from all other
packages and a # symbol indicates that an element is
accessible only to packages contained within a given
package.

Class-Based Modeling

Analysis Packages

Environment

+Tree

+Landscape

+Road

+Wall

+Bridge

+Building

+VisualEffect

+Scene

Characters

+Player

+Protagonist

+Antagonist

+SupportingRole

RulesOfTheGame

+RulesOfMovement

+ConstraintsOnAction

package name

Class-Based Modeling

Creating A Behavioral
Modeling

• The behavioral model indicates how software will respond to external events or
stimuli. To create the model, the analyst must perform the following steps:

• Evaluate all use-cases to fully understand the sequence of interaction within the system.
• Identify events that drive the interaction sequence and understand how these events

relate to specific objects.

• Create a sequence for each use-case.

• Build a state diagram for the system.

• Review the behavioral model to verify accuracy and consistency.

State Representations
• In the context of behavioral modeling, two different

characterizations of states must be considered:

• the state of each class as the system performs its function and

• the state of the system as observed from the outside as the
system performs its function

• The state of a class takes on both passive and active characteristics
[CHA93].

• A passive state is simply the current status of all of an object’s
attributes.

• The active state of an object indicates the current status of the
object as it undergoes a continuing transformation or
processing.

Creating A Behavioral
Modeling

State Diagram for the ControlPanel Class

reading

locked

select ing

password

ent ered

comparing

password = incorrect

& numberOfTries < maxTries

password = correct

act ivat ion successful

key hit

do: validat ePassword

numberOfTries > maxTries

t imer < lockedTime

t imer > lockedTime

Creating A Behavioral
Modeling

The States of a System
• state—a set of observable circum-stances that characterizes the behavior of a system

at a given time

• state transition—the movement from one state to another

• event—an occurrence that causes the system to exhibit some predictable form of
behavior

• action—process that occurs as a consequence of making a transition

Creating A Behavioral
Modeling

Sequence Diagram

homeowner cont ro l panel sensorssyst em sensors

syst em

ready

reading

request lookup
comparing

resu lt

password ent ered

password = correct

request act ivat ion

act ivat ion successfu l

locked
num berOfTries > m axTries

select ing

t imer > lockedTime
A

A

Figure 8 .2 7 Sequence diagram (part ial) f or Saf eHome secur it y f unct ion

act ivat ion successfu l

Creating A Behavioral
Modeling

REQUIREMENT MODELING FOR WEB AND MOBILE
APPS

Requirements Modeling
for Web and Mobile Apps

• In some WebE situations, analysis and design merge.
However, an explicit analysis activity occurs when …

• the WebApp to be built is large and/or complex
• the number of stakeholders is large

• the number of Web engineers and other contributors is
large

• the goals and objectives (determined during
formulation) for the WebApp will effect the business’
bottom line

• the success of the WebApp will have a strong bearing on
the success of the business

When Do We Perform Analysis?

The Content Model
• Content objects are extracted from use-cases

• examine the scenario description for direct and indirect
references to content

• Attributes of each content object are identified

• The relationships among content objects and/or the
hierarchy of content maintained by a WebApp

• Relationships—entity-relationship diagram or UML

• Hierarchy—data tree or UML

Requirements Modeling
for Web and Mobile Apps

Data Tree

Figure 1 8 .3 Dat a t ree for a SafeHom e com ponent

component

part Number

part Name

part Type

descript ion

price

Market ingDescript ion

Phot ograph

TechDescript ion

Schemat ic

Video

WholesalePrice

Ret ailPr ice

Requirements Modeling
for Web and Mobile Apps

The Interaction Model
• Composed of four elements:

• use-cases

• sequence diagrams

• state diagrams

• a user interface prototype

Requirements Modeling
for Web and Mobile Apps

The Functional Model
• The functional model addresses two processing elements of

the WebApp
• user observable functionality that is delivered by the

WebApp to end-users
• the operations contained within analysis classes that

implement behaviors associated with the class.
• An activity diagram can be used to represent processing flow

Requirements Modeling
for Web and Mobile Apps

The Configuration Model
• Server-side

• Server hardware and operating system environment must
be specified

• Interoperability considerations on the server-side must
be considered

• Appropriate interfaces, communication protocols and
related collaborative information must be specified

• Client-side

• Browser configuration issues must be identified

• Testing requirements should be defined

Requirements Modeling
for Web and Mobile Apps

References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th ed.
McGraw-Hill Companies.Inc, Americas, New York. ISBN : 978 1 259 253157

• UML Specification, https://www.omg.org/spec/UML/About-UML/

• UML 2.0 Tutorial, http://www.youtube.com/watch?v=OkC7HKtiZC0

• Introduction to Model-View-View-Model (MVVM) Pattern,
http://www.youtube.com/watch?v=pY60lLotZCg

http://www.youtube.com/watch?v=OkC7HKtiZC0
http://www.youtube.com/watch?v=pY60lLotZCg

Q & A

