
Software Engineering

Topic 2

Software Process Model

Acknowledgement

These slides have been adapted from
Pressman, R.S. (2015). Software Engineering : A
Practioner's Approach. 8th ed. McGraw-Hill
Companies.Inc, Americas, New York. ISBN : 978
1 259 253157. Chapter 3 , 4, 5 and 6

LO 1 : Describe the concepts of software
process models and the opportunity
for potential business project

Learning Objectives

Contents

• Software Process Structure

• Process Models

• Agile Development

• Human Aspects of Software Engineering

SOFTWARE PROCESS STRUCTURE

Software Process
Structure

Software Process
Framework

Process Flow

Software Process Structure

Software Process
Structure

• A task set defines the actual work to be done to
accomplish the objectives of a software
engineering action.
• A list of the task to be accomplished

• A list of the work products to be produced

• A list of the quality assurance filters to be applied

Identifying a Task Set

Process Patterns
• A process pattern

• describes a process-related problem that is encountered
during software engineering work,

• identifies the environment in which the problem has
been encountered, and

• suggests one or more proven solutions to the problem.

• Stated in more general terms, a process pattern provides
you with a template [Amb98]—a consistent method for
describing problem solutions within the context of the
software process.

Software Process Structure

Process Pattern Types
• Stage patterns—defines a problem associated with

a framework activity for the process.

• Task patterns—defines a problem associated with a
software engineering action or work task and
relevant to successful software engineering practice

• Phase patterns—define the sequence of framework
activities that occur with the process, even when
the overall flow of activities is iterative in nature

Software Process Structure

PROCESS MODEL

Process Models
• Prescriptive process models advocate an orderly approach to software

engineering

That leads to a few questions …

• If prescriptive process models strive for structure and order, are they
inappropriate for a software world that thrives on change?

• Yet, if we reject traditional process models (and the order they imply) and
replace them with something less structured, do we make it impossible to
achieve coordination and coherence in software work?

Process Models

The Waterfall Model

Communicat ion

Planning

Modeling

Const ruct ion
Deployment

analysis

design
code

t est

project init iat ion

requirement gat hering estimating

scheduling

tracking

delivery

support

f eedback

Process Models

The V-Model

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t

 d e l i v e r y

 f e e d b a c k

analy s is

des ign c ode

t es t

increment # 1

increment # 2

delivery of

1st increment

delivery of

2nd increment

delivery of

nt h increment

increment # n

project calendar t ime

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t

 d e l i v e r y

 f e e d b a c k

analy s is

des ign c ode

t es t

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t

 d e l i v e r y

 f e e d b a c k

analy s is

des ign
c ode

t es t

The Incremental-Model

Process Models

Evolutionary Models: Prototyping

Communicat ion

Qu ick p lan

Const ruct ion

of

prot ot ype

Mo de lin g

 Qu ick d e sig n

De live ry

& Fe e dback

Deployment

communication

Quick
plan

Modeling
Quick design

Construction
of prototype

Deployment
delivery &
feedback

Process Models

Evolutionary Models: The Spiral

communication

planning

modeling

construction
deployment

 deliv ery

 f eedback

start

analy sis

design

code

test

estimation

scheduling

risk analy sis

Process Models

Evolutionary Models: Concurrent

Under review

Baselined

Done

Under

revision

Await ing

changes

Under

development

none

Modeling act ivit y

represents the state

of a software engineering

act ivity or task

Process Models

Specialized Process
Models

• Component based development—the process to apply when reuse is a
development objective

• Formal methods—emphasizes the mathematical specification of requirements

• AOSD—provides a process and methodological approach for defining,
specifying, designing, and constructing aspects

• Unified Process—a “use-case driven, architecture-centric, iterative and
incremental” software process closely aligned with the Unified Modeling
Language (UML)

AGILE DEVELOPMENT

Agile Development
Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more

Source: agilemanifesto.org

Agile Development
What is “Agility”?

• Effective (rapid and adaptive) response to change

• Effective communication among all stakeholders

• Drawing the customer onto the team

• Organizing a team so that it is in control of the work
performed

Yielding …

• Rapid, incremental delivery of software

Agility and the Cost of Change

Agile Development

Extreme Programming (XP)
• The most widely used agile process, originally

proposed by Kent Beck

• XP Planning
• Begins with the creation of “user stories”

• Agile team assesses each story and assigns a cost

• Stories are grouped to for a deliverable increment

• A commitment is made on delivery date

• After the first increment “project velocity” is used to help define
subsequent delivery dates for other increments

Agile Development

Extreme Programming (XP)
• XP Design

• Follows the KIS principle
• Encourage the use of CRC cards (see Chapter 8)
• For difficult design problems, suggests the creation of “spike solutions”—a

design prototype
• Encourages “refactoring”—an iterative refinement of the internal program

design

• XP Coding
• Recommends the construction of a unit test for a store before coding

commences
• Encourages “pair programming”

• XP Testing
• All unit tests are executed daily
• “Acceptance tests” are defined by the customer and executed to assess

customer visible functionality

Agile Development

Extreme Programming (XP)

unit t est

cont inuous int egrat ion

accept ance t est ing

pair

programming

Release

user st ories

 values

 accept ance t est crit eria

it erat ion plan

simple design

 CRC cards

spike solut ions

 prot ot ypes

refact oring

sof tware increment

project velocit y computed

Agile Development

Adaptive Software Development

• Originally proposed by Jim Highsmith

• ASD — distinguishing features

• Mission-driven planning

• Component-based focus

• Uses “time-boxing”

• Explicit consideration of risks

• Emphasizes collaboration for requirements gathering

• Emphasizes “learning” throughout the process

Agile Development

Adaptive Software Development
adapt ive cycle planning

 uses mission st at ement

 project const raint s

 basic requirement s

t ime-boxed release plan

Requirement s gat hering

 JAD

 mini-specs

component s implement ed/ t est ed

 focus groups for feedback

 formal t echnical reviews

post mort ems

sof tware increment

adjustments for subsequent cycles

Release

Agile Development

Dynamic Systems Development Method
• Promoted by the DSDM Consortium (www.dsdm.org)

• DSDM—distinguishing features
• Similar in most respects to XP and/or ASD

• Nine guiding principles

• Active user involvement is imperative.

• DSDM teams must be empowered to make decisions.

• The focus is on frequent delivery of products.

• Fitness for business purpose is the essential criterion for acceptance of
deliverables.

• Iterative and incremental development is necessary to converge on an
accurate business solution.

• All changes during development are reversible.

• Requirements are baselined at a high level

• Testing is integrated throughout the life-cycle.

Agile Development

http://www.dsdm.org/

Dynamic Systems Development Method

Agile Development

Scrum
• Originally proposed by Schwaber and Beedle

• Scrum—distinguishing features

• Development work is partitioned into “packets”

• Testing and documentation are on-going as the product
is constructed

• Work occurs in “sprints” and is derived from a “backlog”
of existing requirements

• Meetings are very short and sometimes conducted
without chairs

• “demos” are delivered to the customer with the time-
box allocated

Agile Development

Scrum

Agile Development

Scrum Process Flow (used with permission)

Crystal

• Proposed by Cockburn and Highsmith

• Crystal—distinguishing features

• Actually a family of process models that allow
“maneuverability” based on problem characteristics

• Face-to-face communication is emphasized

• Suggests the use of “reflection workshops” to review
the work habits of the team

Agile Development

Feature Driven Development
• Originally proposed by Peter Coad et al

• FDD—distinguishing features

• Emphasis is on defining “features”
• a feature “is a client-valued function that can be implemented

in two weeks or less.”

• Uses a feature template
• <action> the <result> <by | for | of | to> a(n) <object>

• A features list is created and “plan by feature” is
conducted

• Design and construction merge in FDD

Agile Development

Feature Driven Development

Reprinted with permission of Peter Coad

Agile Development

Agile Modeling
• Originally proposed by Scott Ambler

• Suggests a set of agile modeling principles

• Model with a purpose

• Use multiple models

• Travel light

• Content is more important than representation

• Know the models and the tools you use to create them

• Adapt locally

Agile Development

HUMAN ASPECT OF SOFTWARE ENGINEERING

Human Aspects of
Software Engineering

Characteristics of Software Engineer
Erdogmus [erd09] identifies seven traits that are present when an
individual software engineer exhibits “superprofesional” behavior.

An effective software engineer :

• has a sense of individual responsibility

• has an acute awareness

• is brutally honest

• exhibits resilience under prerssure

• has a heightened sense of fairness

• exhibits attention to detail

• is pragmatic

The Psychology of Software Engineering
In a seminal paper on the psychology of software engineering, Bill
curtis and Dave Walz [Cur90] suggest a layered behavioral model
for software development.

Human Aspects of
Software Engineering

• An effective team should foster a sense of trust

• Software engineers on the team should trust the skills
and competence of their peers and their managers.

• The team should encourage a sense of improvement by
periodically reflecting on its approach to software
engineering and looking for ways to improve their work

Human Aspects of
Software Engineering

Team Structure

Constantine [Con93] suggests four “organizational paradigms” for software engineering teams

1. A closed paradigm; a team along a traditional hierarchy of authority

2. A random paradigm; a team loosely and depends on individual initiative of the team
members

3. An open paradigm; a team in a manner that achieves some of the controls associated with the
closed paradigm but also much of the innovation that occurs when using the random
paradigm

4. A synchronous paradigm; relies on the natural compartmentalization of a problem and
organizes team members to work on pieces of the problem with little active communication
amonjg themselves

Human Aspects of
Software Engineering

References

• Pressman, R.S. (2015). Software Engineering : A Practioner's Approach. 8th ed.
McGraw-Hill Companies.Inc, Americas, New York. ISBN : 978 1 259 253157.

• Manifesto for Agile Software Development, http://agilemanifesto.org/

• Multimedia : Video Water Fall, V model,
http://www.youtube.com/watch?v=KaPC0gsEQ68

• Software Engineering Incremental Model,
http://www.youtube.com/watch?v=9cBkihYP1rY

• The Strengths and Weaknesses of Extreme Programming,
http://www.youtube.com/watch?v=LkhLZ7_KZ5w

• Agile project management tutorial: What is agile project managemen,
http://www.youtube.com/watch?v=MJR-EgHTA4E

http://www.youtube.com/watch?v=KaPC0gsEQ68
http://www.youtube.com/watch?v=9cBkihYP1rY
http://www.youtube.com/watch?v=LkhLZ7_KZ5w
http://www.youtube.com/watch?v=MJR-EgHTA4E

Q & A

